Virus-based expression vectors are important tools for high-level production of foreign proteins and for gene function analysis through virus induced gene silencing. To exploit further their advantages as fast, high yield replicons, a set of vectors was produced by converting and adapting Potato virus X (PVX) and Tobacco mosaic virus (TMV)-based vectors to allow easy cloning of foreign sequences by the Gateway cloning system. Target genes were cloned efficiently by recombination and successfully expressed in Nicotiana benthamiana following inoculation by Agrobacterium (agroinfection). Using green fluorescent protein (GFP) as marker, high-level expression with both PVX-GW and TMV-GW vectors was confirmed. A Gateway inserted phytoene desaturase gene (pds) fragment in PVX-GW and TMV-GW vectors (PVX-GW-PDS and TMC-GW-PDS), induced gene silencing of the endogenous pds gene in N. benthamiana as evidenced by chlorotic leaves. The PVX-GW vector was adapted further by cloning the GFP gene upstream of the Gateway sequences, allowing the easy production of GFP fusions after recombination of a target gene. Subcellular localization of resulting GFP fusion was validated by recombining and expressing the coat protein gene from Tomato chlorotic mottle virus, revealing its nuclear localization. A PVX-GW transient expression assay of a nucleocapsid protein gene fragment of Tomato spotted wilt virus and of a single chain antibody against this protein was shown to confer effective resistance to TSWV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2009.11.005DOI Listing

Publication Analysis

Top Keywords

gene
9
tobacco mosaic
8
gateway cloning
8
cloning system
8
induced gene
8
gene silencing
8
pvx-gw tmv-gw
8
tmv-gw vectors
8
protein gene
8
vectors
6

Similar Publications

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

: Major Depressive Disorder (MDD) is a prevalent and debilitating mental disorder that has been linked to hyperhomocysteinemia and folate deficiency. These conditions are influenced by the methylenetetrahydrofolate reductase () gene, which plays a crucial role in converting homocysteine to methionine and is essential for folate metabolism and neurotransmitter synthesis, including serotonin. : This study explored the association between and polymorphisms among Saudi MDD patients attending the Erada Complex for Mental Health and Erada Services outpatient clinic in Jeddah, Saudi Arabia.

View Article and Find Full Text PDF

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!