Background: Rapid, easy, economical and accurate species identification of yeasts isolated from clinical samples remains an important challenge for routine microbiological laboratories, because susceptibility to antifungal agents, probability to develop resistance and ability to cause disease vary in different species. To overcome the drawbacks of the currently available techniques we have recently proposed an innovative approach to yeast species identification based on RAPD genotyping and termed McRAPD (Melting curve of RAPD). Here we have evaluated its performance on a broader spectrum of clinically relevant yeast species and also examined the potential of automated and semi-automated interpretation of McRAPD data for yeast species identification.
Results: A simple fully automated algorithm based on normalized melting data identified 80% of the isolates correctly. When this algorithm was supplemented by semi-automated matching of decisive peaks in first derivative plots, 87% of the isolates were identified correctly. However, a computer-aided visual matching of derivative plots showed the best performance with average 98.3% of the accurately identified isolates, almost matching the 99.4% performance of traditional RAPD fingerprinting.
Conclusion: Since McRAPD technique omits gel electrophoresis and can be performed in a rapid, economical and convenient way, we believe that it can find its place in routine identification of medically important yeasts in advanced diagnostic laboratories that are able to adopt this technique. It can also serve as a broad-range high-throughput technique for epidemiological surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779194 | PMC |
http://dx.doi.org/10.1186/1471-2180-9-234 | DOI Listing |
Pathogens
January 2025
Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1j, 20-708 Lublin, Poland.
In this study, we investigated the interactions between and , , , and in mixed infections. Initially, these interactions were studied qualitatively and quantitatively in dual-species biofilms formed in vitro. The MTT assays, determination of the total CFU/mL, and SEM analysis showed that interacted differentially with the other spp.
View Article and Find Full Text PDFPathogens
January 2025
Center for Infectious, Zoonotic and Vector-Borne Diseases, Lincoln Memorial University, Harrogate, TN 37752, USA.
According to the Humane Society, 25 to 40 percent of pet dogs in the United States are adopted from animal shelters. Shelter dogs can harbor bacterial, viral, fungal, and protozoal pathogens, posing risks to canine and human health. These bacterial pathogens may also carry antibiotic resistance genes (ARGs), serving as a reservoir for antimicrobial resistance (AMR) transmission.
View Article and Find Full Text PDFInsects
January 2025
Programa Operativo de Moscas, SADER-SENASICA, Camino a los Cacaotales S/N, Metapa de Domínguez CP 30860, Chiapas, Mexico.
Food-baited traps are an important part of early detection programs for invasive tephritid fruit fly species, as they are attractive to both sexes of all targeted species. Torula yeast borax (TYB) mixture is a standard food bait, but its longevity is limited (1-2 weeks). Synthetic food-based lures have been developed, including ammonium acetate, putrescine, and trimethylamine.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal.
Oral candidiasis is one of the most common infections in the immunocompromised. Biofilms of species can make treatments difficult, leading to oral infection recurrence. This research aimed to isolate a with anti- effects from the oral cavity.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Molecular Sciences, Uppsala BioCentrum, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden.
Cassava is an important staple food that contributes to the food security of small-scale Mozambican farmers. In southern Mozambique, cassava roots are usually processed into cassava roasted flour, locally known as "rale". The handling and processing practices connected to "rale" production may introduce microbial contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!