Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu(+) to the CopY repressor, thereby releasing its bound zinc and abolishing repressor-DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro. Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2009.01833.xDOI Listing

Publication Analysis

Top Keywords

copper chaperone
12
copper
9
stress response
8
copz copper
8
enterococcus hirae
8
gls24
6
copz
6
stress
4
response protein
4
protein gls24
4

Similar Publications

Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.

View Article and Find Full Text PDF

Dysfunctional copper homeostasis in affects genomic and neuronal stability.

Redox Biochem Chem

December 2024

Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.

While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.

View Article and Find Full Text PDF

Hippo-YAP signaling alleviates copper-induced mitochondrial dysfunction and oxidative damage via the ATOX1-PPA2 pathway.

Int J Biol Macromol

December 2024

Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:

Hippo signaling plays a crucial role in the cellular response to various stressors, such as mechanical stress, metabolic stress, and hypoxic stress. However, its physiological significance in copper (Cu) stress remains poorly understood. Here, we demonstrated aberrant activation of Hippo-YAP signaling in sheep pancreas and pancreatic organoids exposed to excessive Cu, accompanied by significant pathological changes, elevated levels of oxidative stress, and impaired mitochondrial structure and function.

View Article and Find Full Text PDF

Solving the puzzle of copper trafficking in Trypanosoma cruzi: candidate genes that can balance uptake and toxicity.

FEBS J

December 2024

Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina.

Article Synopsis
  • Trypanosoma cruzi, the parasite causing Chagas disease, relies on copper (Cu) for growth and development, but its levels must be carefully controlled due to potential toxicity.
  • The study found that Cu is crucial for the proliferation of the epimastigote stage and the transition to the metacyclic form, but the intracellular amastigote stage experiences copper stress during infection.
  • Researchers identified key gene products related to copper metabolism, such as TcCuATPase for copper export and suggested TcIT as a possible copper importer, highlighting a unique model of copper transport and distribution in T. cruzi.
View Article and Find Full Text PDF
Article Synopsis
  • * The study focuses on the TaCCS1-B gene in bread wheat, which is linked to improved tolerance to abiotic stresses; it was shown to increase stress resilience in yeast and transgenic Arabidopsis plants by enhancing copper homeostasis and reducing oxidative stress.
  • * Transgenic Arabidopsis lines expressing TaCCS1-B demonstrated better germination, longer roots, higher copper accumulation, increased photosynthetic pigments, and lower levels of harmful substances like hydrogen peroxide, suggesting that this gene could be key to developing crops that can withstand environmental challenges. *
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!