Methods that allow visualisation of proteins in living systems, in real time have been key to our understanding of the molecular underpinnings of life. Although the use of genetically encoded fusions to fluorescent proteins have greatly advanced such studies, the large size of these tags and their ability to perturb protein activity has been major limitations. Attempts to circumvent these issues have seen the genesis of complementary strategies to chemically label/modify proteins. Thus, chemical labelling approaches seek to "decorate" biomolecules in live cells through the site-specific introduction of a small, non-native chemical tag (or reporter group). The introduced tag is minimally invasive such that the activity and/or function of the target molecule in not perturbed/compromised by its inclusion. In most cases, this modification is brought about by fusing target biomolecules to protein domains/peptide tags or via the incorporation of reactive "handles" by either exploiting the cell's biosynthetic machinery or during protein synthesis. Selective tagging of the biomolecule then proceeds via a bioorthogonal chemical reaction following exogenous addition of probe(s). Depending on the nature of the probe, the method can be applied to either visualise/track the dynamics of target molecule(s) in their native cellular milieu or for affinity enrichment for further downstream applications. The versatility of these approaches has been demonstrated by their ability to tag not just proteins but also intractable biomolecules like lipids and glycans. In this review, we summarise the various strategies available to "chemically" tag proteins and provide a comparative analysis their advantages and disadvantages. We also highlight the many creative applications of such methodologies and discuss their future prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/092986709789760706 | DOI Listing |
Commun Chem
January 2025
Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by HO are still unknown.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.
A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea.
Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.
Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.
View Article and Find Full Text PDFChem Rec
January 2025
Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!