Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection.

J Agric Food Chem

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Biotechnology Department, National Reference Laboratory for Genetically Modified Organisms (GMO) Analysis, Rome, Italy.

Published: December 2009

The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf902560xDOI Listing

Publication Analysis

Top Keywords

genetically modified
12
modified organism
8
organism gmo
8
pcr methods
8
real-time pcr
8
pcr
6
methods
5
finding joker
4
maize
4
joker maize
4

Similar Publications

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.

View Article and Find Full Text PDF

Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!