Optimization of radiation protection devices for the operator is achieved by minimizing the effective dose (E) on the basis of the recommendations of Publications 60 and 103 of the International Commission on Radiological Protection (ICRP). Radiation exposure dosimetry was performed with thermoluminescence dosimeters using one Alderson phantom in the patient position and a second one in the typical position of the operator. Various types of protective clothing as well as fixed leaded shieldings (table mounted shielding and overhead suspended shields) were considered calculating E. Shielding factors for protective equipment can readily be misinterpreted referring to the reduction of the effective dose because fixed protective barriers as well as radiation protection clothing are shielding only parts of the body. With the ICRP 103 approach relative to the exposure without lead protection, a lead apron of 0.35 or 0.5 mm thickness reduces E to 14.4 or 12.3%, respectively; by using an additional thyroid collar, these values are reduced to 9.7 or 7.5%. A thyroid collar reduces the effective dose by more than an increase of the lead equivalency of the existing apron. Wearing an apron of 0.5 mm lead-equivalent with a thyroid collar and using an additional side shield, E decreases to 6.8%. Using both a fixed side and face shield decreases E to 2.0%. For protective garments including thyroid protection, the values of the effective dose in cardiac catheterization are 47-106% higher with ICRP 103 than with ICRP 60 recommendations. This is essentially caused by the introduction of new factors for organs in the head and neck region in ICRP 103.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.HP.0000363843.01041.99 | DOI Listing |
Assay Drug Dev Technol
January 2025
Institute of Pharmaceutical Research, GLA University, Mathura, India.
J Interv Card Electrophysiol
January 2025
Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Background: The conventional mapping approach for the atrioventricular accessory pathway (AP) involves point-by-point mapping to identify the connection sites of the AP to the atria or ventricle and accurate interpretation of local electrograms. Omnipolar mapping technology (OMT) explains how vector and wave speed are produced by using both unipolar and bipolar signals to obtain omnipolar signals, directions, and conduction velocity. The aim of this study is to verify the effectiveness of OMT for catheter ablation of AP.
View Article and Find Full Text PDFVet Res Commun
January 2025
Biochemistry, Veterinary Biosciences Department, Veterinary Faculty, Universidad de la República, Ruta 8, Km 18 y Ruta 102, Montevideo, 13000, Uruguay.
The aim was to study the effect of long-acting analogue of oxytocin (Carbetocin) on cervical collagenolysis of MAP-eCG synchronized ewes. At the expected time of artificial insemination, five ewes were slaughtered (n = 5) and their cervical explants (100-200 mg) were incubated during 12 h with MEM supplemented with 0, 8, 16, 32 and 64 ng/mL of Cb. Activities of activated and latent forms of matrix metalloproteinases-2 and - 9 (MMP-2 and MMP-9, respectively) in the supernatant were determined by a SDS-PAGE zymography and prostaglandin E2 concentration by immunoassay.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
Background: ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models.
Methods: To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued.
Radiat Environ Biophys
January 2025
Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.
Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!