Telomerase-negative cancer cells maintain their telomeres by a mechanism known as alternative lengthening of telomeres (ALT) and achieve unlimited replicative potential. A hallmark of ALT cells is the recruitment of telomeres to promyelocytic leukemia (PML) bodies and formation of ALT-associated PML bodies (APBs). Although the exact molecular mechanism of APBs assembly remains unclear, APBs assembly requires telomere and PML body-associated proteins, including TRF1 and PML. Here, we report that PML3, one of PML isoforms, is involved in APBs formation. As a new binding protein of TRF1 (telomeric repeat binding factor 1), PML3 directly interacts with TRF1 and recruits TRF1 to PML bodies in U2OS cells. More notably, depletion of PML3 by small interfering RNA does not affect PML bodies formation, but inhibits the recruitment of both TRF1 and TRF2 to APBs. Further study shows that the recruitment of TRF1 to APBs depends on its interaction with a specific PML3 isoform. Thus, the interaction of PML3 with TRF1 is isoform specific and likely to be essential for APBs assembly in U2OS cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2009.10.009DOI Listing

Publication Analysis

Top Keywords

pml bodies
20
u2os cells
12
apbs assembly
12
trf1
8
interacts trf1
8
pml
8
alt-associated pml
8
assembly u2os
8
bodies formation
8
trf1 pml
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!