The degradation of commonly detected organophosphorus (OP) pesticides, in drinking water sources, was investigated under simulated chloramination conditions. Due to monochloramine autodecomposition, it is difficult to observe the direct reaction of monochloramine with each OP pesticide. Therefore, a model was developed to examine the reaction of monochloramine (NH(2)Cl) and dichloramine (NHCl(2)) with chlorpyrifos (CP), diazinon (DZ), and malathion (MA). Monochloramine was found not to be very reactive with each OP pesticides, (k)NH(2)Cl,OP = 11-21 M(-1)h(-1). While, dichloramine (NHCl(2)) was found to be 2 orders of magnitude more reactive with each of the OP pesticides than monochloramine, (k)NHCl(2),OP = 2000-2900 M(-1)h(-1), which is still three orders of magnitude less than the hypochlorous acid reaction rate coefficient with each OP pesticide. For each pesticide, the reactivity of the three chlorinated oxidants was then found to correlate with half-wave potentials (E(1/2)) of each oxidant. With reaction rate coefficients for the three chlorinated oxidations as well as neutral and alkaline hydrolysis rate coefficients for the pesticides, the model was used to determine the dominant reaction pathways as a function of pH. At pH 6.5, OP pesticide transformation was mostly due to the reaction of hypochlorous acid and dichloramine. Above pH 8, alkaline hydrolysis or the direct reaction with monochloramine was the primary degradation pathway responsible for the transformation of OP pesticides. This demonstrates the ability of models to be used as tools to elucidate degradation pathways and parameterize critical reaction parameters when used with select yet comprehensive data sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2009.10.012 | DOI Listing |
Water Res
January 2025
Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. Electronic address:
N-Nitrosamines, many of which are carcinogenic, mutagenic, and teratogenic, are disinfection byproducts (DBPs) formed from the reaction of chloramine with nitrogenous organic compounds during water disinfection. The identification of major nitrosamine precursors is important to understand and prevent nitrosamine formation. In this analysis, we propose that efforts to identify nitrosamine precursors must look beyond conventionally evaluated active agent chemicals to consider inert or inactive chemicals as potentially relevant precursors.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China. Electronic address:
Restricted to the complex nature of dissolved organic matter (DOM) in various aquatic environments, the mechanisms of enhanced iodinated disinfection byproducts (I-DBPs) formation in water containing both I and IO (designated as I/IO in this study) during the ultraviolet (UV)-chloramine sequential disinfection process remains unclear. In this study, four machine learning (ML) models were established to predict I-DBP formation by using DOM and disinfection features as input variables. Extreme gradient boosting (XGB) algorithm outperformed the others in model development using synthetic waters and in cross-dataset generalization of surface waters.
View Article and Find Full Text PDFAllergol Select
November 2024
Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich TUM).
Background: Anaphylaxis is a systemic allergic reaction that is potentially life-threatening. Occupational anaphylaxis is an anaphylaxis that occurs in an occupational context. In this position paper, we propose diagnostic criteria for occupational anaphylaxis and provide an overview of the current state of knowledge in terms of prevalence, triggers, prevention, and management.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India.
The mechanisms and dynamics of bimolecular nucleophilic substitution (S2) reactions are complex and influenced by the nature of the central atom. In this study, we explore S2 at a nitrogen center (S2@N) by investigating the reaction of chloramine (NHCl) with methoxide ion (CHO) using ab initio classical trajectory simulations at the MP2(fc)/aug-cc-pVDZ level of theory. We observe that, in addition to the expected S2 product formation (CHONH + Cl), a high-energy proton-transfer pathway leading to CHOH and NHCl dominates, with near-quantitative agreement between simulations and experimental data.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu city 30010, Taiwan.
Chlorination of ammonia or chloramine-containing waters induces breakpoint chlorination reactions, producing a hydroxyl radical (•OH), but enhances the formation of undesirable -nitrosamines. The prevailing view attributes •OH formation to a nitrosyl intermediate derived from the hydrolysis of dichloramine, but this pathway is unlikely at neutral or acidic pH. This study reveals a novel mechanism where •OH is generated via interactions between trichloramine (NCl) and dichloramine (NHCl), which also form nitrosation agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!