This Part I paper describes the qualification of a new high performance hypromellose (hydroxypropyl methylcellulose, HPMC) capsule shell which contains no gelling agent and is dissolution friendly. The development history and the test results for a series of quality attributes including scanning electron microscopy, hygroscopicity, machineability, weight variation, powder leakage, mechanical strength, stability, cross-linking, animal and human pharmacokinetic results are reported. Comparisons to gelatin and HPMC capsule containing carrageenan showed the new HPMC capsule is superior in terms of mechanical strength, hygroscopicity and compatibility with a wide range of drugs. Specifically, the new HPMC capsule demonstrated improved weight variation, machineability and powder leakage than the HPMC capsule containing carrageenan. And the new capsule demonstrated a broader applicability than gelatin capsule for new drug development due to its inertness and compatibility for a wide range of excipients including those used for liquid fill formulations. In the second phase of qualification, disintegration and dissolution properties of the new HPMC were evaluated and reported in a Part II paper for 10 new clinical compounds with a variety of formulations optimized based on the biopharmaceutical classification system of solubility and permeability. Based on the superior performance, the new HPMC capsule is satisfactorily qualified and has since been used successfully for nearly 20 investigational new drug (IND) compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2009.10.050DOI Listing

Publication Analysis

Top Keywords

hpmc capsule
24
capsule
9
quality attributes
8
weight variation
8
powder leakage
8
mechanical strength
8
capsule carrageenan
8
compatibility wide
8
wide range
8
capsule demonstrated
8

Similar Publications

Objective: This research aims to design and evaluate an enteric-coated hard capsule dosage form for targeted delivery of biological materials, such as FMT (fecal microbiota transplant) or live microbes, to the distal parts of the GIT. The capsules are designed to be internally protected against destruction by hydrophilic filling during passage through the digestive tract.

Methods: Hard gelatin capsules and DRcapscapsules based on HPMC and gellan were used to encapsulate a hydrophilic body temperature-liquefying gelatin hydrogel with caffeine or insoluble iron oxide mixture.

View Article and Find Full Text PDF

This study aims to design and optimize ondansetron (OND) gastro-retentive floating minitablets for better and prolonged control of postoperative nausea and vomiting (PONV) with improved patient compliance. Minitablets were directly compressed and encapsulated in a size 2 capsule shell with an overall dose of 24 mg. Central composite design (CCD) was applied keeping one cellulose ether derivative HPMC K15M and Carbopol 971 as variable and used as swelling and rate retarding agents.

View Article and Find Full Text PDF

Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively.

View Article and Find Full Text PDF

Design and evaluation of oseltamivir phosphate dual-phase extended-release tablets for the treatment of influenza.

Int J Pharm

August 2024

State Key Laboratory of Anti-Infection Drug Development, Sunshine Lake Pharma Co., Ltd., Dong Guan 523871, PR China. Electronic address:

In this study, once-daily extended-release tablets with dual-phase release of oseltamivir phosphate were developed for the treatment of influenza. The goal was to improve patient adherence and offer more therapeutic choices. The tablets were manufactured using wet granulation, bilayer tablet compression, and enteric membrane-controlled coating processes.

View Article and Find Full Text PDF

Apixaban and clopidogrel in a fixed-dose combination: Formulation and in vitro evaluation.

Saudi Pharm J

June 2024

Pharmacy Department, Faculty of Pharmacy, Nursing, and Health Professions, Birzeit University, State of Palestine, PO Box, 14, Palestine.

Fixed-dose combination (FDC) products represent a novel, safe, and cost-effective formulation. Combined use of anticoagulant and antiplatelet medications is common among comorbid cardiovascular patients. This study aimed to formulate FDC tablets for Apixaban and Clopidogrel, as prophylaxis and treatment of thrombo-embolic events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!