Gastroenterology
Department of Paediatrics, Division of Paediatric Gastroenterology, Gastrointestinal Research Group, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
Published: March 2010
Background & Aims: Leukocyte adhesion deficiency II (LAD II) is a rare condition caused by defective protein fucosylation, causing decreased leukocyte rolling, psychomotor retardation, and poor growth. The ligand-binding activity of Notch, a gastrointestinal signaling protein, depends on O-fucosylation. We investigated Notch signaling and intestinal epithelial architecture in a mouse model of LAD II.
Methods: Mice lacking 3,5-epimerase/4-reductase (FX) or FX(-/-) bone marrow chimeras (with either wild-type or FX(-/-) bone marrow) were maintained on a fucose-free diet. Intestinal secretory epithelial cells were quantified by histology and immunohistochemistry. Reverse transcription-polymerase chain reaction and immunoblot analyses were used to detect Notch-regulated genes in isolated crypt epithelium. Intestinal leukocyte-endothelial interaction was quantified by intravital microscopy. The intestinal epithelium of 2-week-old FX(-/-) mice was transfected with an adenoviral vector expressing a constitutively active form of Notch.
Results: FX(-/-) mice rapidly exhibited secretory epithelial cell hyperplasia, reduced cell proliferation, and altered epithelial gene expression patterns consistent with reduced Notch signaling. These effects were reversed when mice were given dietary fucose or by adenoviral transfection of the intestinal epithelium with the Notch intracellular domain.
Conclusions: In a mouse model of LAD II, secretory cell hyperplasia occurs in the small intestine and colon; these effects depend on Notch signaling. Defects in Notch signaling might therefore be involved in the pathogenesis of this rare pediatric condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2009.10.049 | DOI Listing |
Nanoscale Adv
December 2024
Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India.
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.
View Article and Find Full Text PDFArthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.
View Article and Find Full Text PDFInt Endod J
January 2025
School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.
Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.