A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+. | LitMetric

Ca(2+) release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca(2+)-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical "nongenomic" effects mediated by estrogen receptors (ER) include rapid Ca(2+) release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of colocalization between RyR type 2 (RyR2) and ER type beta (ER beta) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single-channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ER beta (ER beta 1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca(2+)] concentrations of 100 nM, suggesting a synergistic action of ER beta 1 and Ca(2+) in RyR activation, and a potential contribution to Ca(2+)-induced Ca(2+) release rather than to basal intracellular Ca(2+) concentration level at rest. This RyR/ER beta interaction has potential effects on cellular physiology, including roles of shorter ER beta isoforms and modulation of the RyR/ER beta complexes by exogenous estrogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844704PMC
http://dx.doi.org/10.3109/10799890903295168DOI Listing

Publication Analysis

Top Keywords

ca2+ release
12
beta
9
beta beta
8
ryr/er beta
8
ca2+
6
unliganded long
4
long isoform
4
isoform estrogen
4
estrogen receptor
4
receptor beta
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!