A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of ciprofloxacin and N-acetylcysteine on bacterial adherence and biofilm formation on ureteral stent surfaces. | LitMetric

AI Article Synopsis

  • The study evaluated the effectiveness of ciprofloxacin (CIP) and N-acetylcysteine (NAC), both individually and combined, against biofilm production on ureteral stent surfaces by various bacteria strains.
  • Results showed that both substances inhibited biofilm formation by over 60%, with the CIP/NAC combination being the most effective, achieving up to 100% inhibition and disruption of existing biofilms.
  • NAC enhances ciprofloxacin's effects by breaking down the extracellular polysaccharide matrix that protects biofilms, indicating a statistically significant improvement in treatment efficacy.

Article Abstract

The aim of this study was to evaluate the effect of ciprofloxacin (CIP), N-acetylcysteine (NAC) alone and in combination on biofilm production and pre-formed mature biofilms on ureteral stent surfaces. Two strains each of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa and Proteus vulgaris, recently isolated from patients undergoing ureteral stent removal and shown to be capable of biofilm production, were used in this study. The inhibitory effects of ciprofloxacin, N-acetylcysteine and ciprofloxacin/N-acetylcysteine combination were determined by static adherence assay. Ciprofloxacin (MIC and 2 MIC) and N-acetylcysteine (2 and 4 mg/ml) inhibited biofilm production by > or = 60% in all tested microorganisms. Disruption of pre-formed biofilms of all tested microorganisms was found to be > or = 78% in the presence of ciprofloxacin (MIC and 2 MIC) and > or = 62% in the presence of N-acetylcysteine (2 and 4 mg/ml), compared to controls. Ciprofloxacin/N-acetylcysteine showed the highest inhibitory effect on biofilm production (94-100%) and the highest disruptive effect on the pre-formed biofilms (86-100%) in comparison to controls. N-acetylcysteine was found to increase the therapeutic efficacy of ciprofloxacin by degrading the extracellular polysaccharide matrix of biofilms. These data are statistically significant. The inhibitory effects of ciprofloxacin and N-acetylcysteine on biofilm production were also verified by scanning electron microscope (SEM). In conclusion, Ciprofloxacin/N-acetylcysteine combinations have the highest inhibitory effect on biofilm production and the highest ability to eradicate pre-formed mature biofilms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biofilm production
24
ciprofloxacin n-acetylcysteine
12
ureteral stent
12
stent surfaces
8
pre-formed mature
8
mature biofilms
8
inhibitory effects
8
effects ciprofloxacin
8
ciprofloxacin mic
8
mic mic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!