Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to evaluate the effect of ciprofloxacin (CIP), N-acetylcysteine (NAC) alone and in combination on biofilm production and pre-formed mature biofilms on ureteral stent surfaces. Two strains each of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa and Proteus vulgaris, recently isolated from patients undergoing ureteral stent removal and shown to be capable of biofilm production, were used in this study. The inhibitory effects of ciprofloxacin, N-acetylcysteine and ciprofloxacin/N-acetylcysteine combination were determined by static adherence assay. Ciprofloxacin (MIC and 2 MIC) and N-acetylcysteine (2 and 4 mg/ml) inhibited biofilm production by > or = 60% in all tested microorganisms. Disruption of pre-formed biofilms of all tested microorganisms was found to be > or = 78% in the presence of ciprofloxacin (MIC and 2 MIC) and > or = 62% in the presence of N-acetylcysteine (2 and 4 mg/ml), compared to controls. Ciprofloxacin/N-acetylcysteine showed the highest inhibitory effect on biofilm production (94-100%) and the highest disruptive effect on the pre-formed biofilms (86-100%) in comparison to controls. N-acetylcysteine was found to increase the therapeutic efficacy of ciprofloxacin by degrading the extracellular polysaccharide matrix of biofilms. These data are statistically significant. The inhibitory effects of ciprofloxacin and N-acetylcysteine on biofilm production were also verified by scanning electron microscope (SEM). In conclusion, Ciprofloxacin/N-acetylcysteine combinations have the highest inhibitory effect on biofilm production and the highest ability to eradicate pre-formed mature biofilms.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!