The incidence of gallstone disease is two to three times higher in women than in men, and female sex hormones, particularly estrogens, have been implicated as contributory factors. Cholesterol nucleation is the initial step in gallstone pathogenesis and proceeds from cholesterol-rich phospholipid vesicles. The aim of this study was to investigate if there is a difference in cholesterol nucleation rates in male and female bile and whether estrogen influences nucleation rates by interacting with cholesterol-rich regions known as "lipid rafts" that exist within the cholesterol-phospholipid vesicles of the bile. Cholesterol nucleation from native prairie dog bile and the interaction of estrogens with lipid rafts in model bile solutions were investigated using Förster resonance energy transfer (FRET). Female native bile samples showed a greater reduction in energy transfer than did male native bile, indicating that cholesterol nucleation occurred more readily in female bile than in male bile. Model bile experiments demonstrated that the addition of estrogen has a significant effect, either cholesterol nucleation or raft disruption, but only in samples containing cholesterol-rich rafts. These results suggest that estrogen interacts with cholesterol-rich rafts in vesicles within bile to promote cholesterol nucleation and predispose females to gallstone formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-009-9214-0DOI Listing

Publication Analysis

Top Keywords

cholesterol nucleation
28
native bile
12
bile
11
nucleation
8
nucleation native
8
bile estrogen
8
nucleation rates
8
female bile
8
vesicles bile
8
model bile
8

Similar Publications

Molecular self-assembly of amyloid-beta peptides to form fibrillar aggregates is a known cause of Alzheimer's disease. Although homogeneous nucleation of amyloid-beta is unfavorable, heterogeneous nucleation of amyloid-beta in cell membranes plays a key role in fibril formation. We observed these opposite roles in the effects of cholesterol and lanosterol, the precursor of cholesterol in the brain, on nucleation.

View Article and Find Full Text PDF

Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase.

View Article and Find Full Text PDF

Cholesterol crystals, which cause inflammation and various diseases, predominantly grow in a platy, rhomboid structure on the plasma membranes but exhibit an uneven three-dimensional (3D) architecture intracellularly. Here, it is demonstrated how cholesterol crystallizes in a non-rhomboidal shape on the surface of lipid droplets and develops into 3D sheet-like agglomerates using an in vitro lipid droplet reconstitution system with stereoscopic fluorescence imaging. The findings reveal that interfacial cholesterol transport on the lipid droplet surface and unique lipid droplet components significantly influence the nucleation-and-growth dynamics of cholesterol crystals, leading to crystal growth in various polygonal shapes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is caused by the assembly of amyloid-beta (Aβ) peptides into oligomers and fibrils. Endogenous Aβ aggregation may be assisted by cell membranes, which can accelerate the nucleation step enormously, but knowledge of membrane-assisted aggregation is still very limited. Here we used extensive MD simulations to structurally and energetically characterize key intermediates along the membrane-assisted aggregation pathways of Aβ40.

View Article and Find Full Text PDF

Noble metal nanoparticles decorated on a catalyst support with a large specific surface area can exhibit enhanced catalytic activity. To this end, a synthetic method to heterogeneously and evenly nucleate platinum nanoparticles (Pt NPs) onto mesoporous silica nanoparticles (MSNs) is developed. The obtained Pt NP-modified MSNs (Pt-MSNs) are characterized as a thin layer of 3 nm-sized Pt NPs densely assembled on the MSN surface, by which the throughput of the peroxidase-like activity of Pt-MSNs is greatly improved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!