One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an "AIs-Deletions matrix" that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2764141 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007622 | PLOS |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.
The oil and gas industry faces two significant challenges, including rising global temperatures and depletion of reserves. Enhanced recovery techniques such as polymer flooding have positioned themselves as an alternative that attracts international attention thanks to increased recovery factors with low emissions. However, existing physical models need further refinement to improve predictive accuracy and prevent design failures in polymer flooding projects.
View Article and Find Full Text PDFCureus
November 2024
Nephrology, Colchester Hospital, Colchester, GBR.
Calciphylaxis is a rare and serious disorder almost exclusively seen in patients on dialysis or those with advanced chronic kidney disease (CKD) not on dialysis and is associated with very high mortality. We present the case of a 50-year-old male with a background of end-stage renal disease (ESRD) compliant with dialysis, parathyroid adenoma, secondary hyperparathyroidism, and high body mass index (BMI). Whilst receiving 31 doses of intravenous sodium thiosulphate (STS) over an 11-week period, the patient underwent surgical debridement of multiple painful ulcerative lesions in his lower abdomen and left thigh and then subsequently a subtotal parathyroidectomy at 70 days from admission.
View Article and Find Full Text PDFBio Protoc
December 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
MicroRNAs (miRNAs) are small, non-coding RNAs that play pivotal roles in gene regulation; they are increasingly recognized as vital biomarkers for various diseases, notably cancer. Conventional methods for miRNA detection, such as quantitative PCR and microarray analysis, often entail intricate sample preparation and lack the requisite sensitivity to detect low-abundance miRNAs like miRNA-21. This protocol presents an innovative approach that combines branched hybridization chain reaction (bHCR) with DNAzyme technology for the precise detection of miRNA-21.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Agricultural Technology, Center for Precision Agriculture, Norwegian Institute of Bioeconomy Research (NIBIO), Nylinna 226 2849, Kapp, Norway.
Raman spectroscopy is a powerful and non-invasive analytical method for determining the chemical composition and molecular structure of a wide range of materials, including complex biological tissues. However, the captured signals typically suffer from interferences manifested as noise and baseline, which need to be removed for successful data analysis. Effective baseline correction is critical in quantitative analysis, as it may impact peak signature derivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!