We examined the methanotrophs in the Trail Road Landfill soils, Ottawa, Ontario, through cultivation-independent molecular assay and the culturing approach. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified methanotroph-specific 16S rDNA gene fragments revealed a more diverse type I (RuMP pathway) methanotrophic community than type II (serine pathway) in 17 soil samples taken along a 50 m transect. The type II methanotrophic community was less diverse, with the dominance of Methylocystis in almost all samples, and clustering with high similarity (85%-88%). Also, the results showed that the C/N ratio of soil organic matter could significantly affect the methanotrophic community structures. The DGGE results were supported by sequence analysis of cloned pmoA. Members of the genera Methylobacter (type I), Methylocaldum (type X), and Methylocystis (type II) appeared to be the dominant methanotrophs. From methanotrophic enrichments, we isolated type I Methylobacter sp., and 3 type II Methylocystis spp.,which appeared to be one of the dominant bacteria species in the soil sample from which isolates were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1139/w09-069DOI Listing

Publication Analysis

Top Keywords

methanotrophic community
12
type
8
methylobacter type
8
type methylocystis
8
appeared dominant
8
methanotrophic
5
phylogenetic analysis
4
analysis methanotrophic
4
methanotrophic communities
4
communities cover
4

Similar Publications

As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how liming, a method to increase soil pH, affects methane uptake in Amazonian soils, revealing significant results in both forest and pasture environments.
  • Liming treatments led to an increase in methane uptake by about 10% in forest soils and 25% in pasture soils, with specific methanotrophic communities actively incorporating carbon from methane in limed areas.
  • The findings suggest that liming not only enhances soil fertility in degraded Amazonian lands but also helps to improve methane oxidation, making it a beneficial practice for managing greenhouse gas emissions.
View Article and Find Full Text PDF

Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate.

Sci Total Environ

December 2024

Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Laoshan Laboratory, Qingdao 266071, China. Electronic address:

Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate.

View Article and Find Full Text PDF

Conversion of coastal wetlands to paddy fields substantially decreases methane oxidation potential and methanotrophic abundance on the eastern coast of China.

Water Res

December 2024

Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China. Electronic address:

Coastal wetland ecosystems play a key role in the global carbon cycle and climate mitigation. The land conversion of coastal wetlands to paddy fields, an increasingly common practice to feed the growing population, has been shown to dramatically stimulate the methane emissions of (CH). However, the knowledge about how such wetland conversion affects the methane oxidation, a key process regulating methane emissions from coastal wetlands, is nearly unknown.

View Article and Find Full Text PDF

Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China.

Sci Total Environ

December 2024

State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang 550081, China; Guizhou Province Field Scientific Observation and Research Station of Hongfeng Lake Reservoir Ecosystem, Guiyang 551499, China. Electronic address:

Microbial methane oxidation plays a significant role in regulating methane emissions from lakes and reservoirs. However, the differences in methane oxidation activity and methanotrophic community between lakes and reservoirs remain inadequately characterized. In this study, sediment and water samples were collected from the large shallow lake (Dianchi) and deep reservoirs (Dongfeng and Hongjiadu) located in karst area, Southwest China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!