Anaeromyxobacter spp. respire soluble hexavalent uranium, U(VI), leading to the formation of insoluble U(IV), and are present at the uranium-contaminated Oak Ridge Integrated Field Research Challenge (IFC) site. Pilot-scale in situ bioreduction of U(VI) has been accomplished in area 3 of the Oak Ridge IFC site following biostimulation, but the susceptibility of the reduced material to oxidants (i.e., oxygen) compromises long-term U immobilization. Following oxygen intrusion, attached Anaeromyxobacter dehalogenans cells increased approximately 5-fold from 2.2x10(7)+/-8.6x10(6) to 1.0x10(8)+/-2.2x10(7) cells per g of sediment collected from well FW101-2. In the same samples, the numbers of cells of Geobacter lovleyi, a population native to area 3 and also capable of U(VI) reduction, decreased or did not change. A. dehalogenans cells captured via groundwater sampling (i.e., not attached to sediment) were present in much lower numbers (<1.3x10(4)+/-1.1x10(4) cells per liter) than sediment-associated cells, suggesting that A. dehalogenans cells occur predominantly in association with soil particles. Laboratory studies confirmed aerobic growth of A. dehalogenans strain 2CP-C at initial oxygen partial pressures (pO2) at and below 0.18 atm. A negative linear correlation [micro=(-0.09xpO2)+0.051; R2=0.923] was observed between the instantaneous specific growth rate micro and pO2, indicating that this organism should be classified as a microaerophile. Quantification of cells during aerobic growth revealed that the fraction of electrons released in electron donor oxidation and used for biomass production (fs) decreased from 0.52 at a pO2 of 0.02 atm to 0.19 at a pO2 of 0.18 atm. Hence, the apparent fraction of electrons utilized for energy generation (i.e., oxygen reduction) (fe) increased from 0.48 to 0.81 with increasing pO2, suggesting that oxygen is consumed in a nonrespiratory process at a high pO2. The ability to tolerate high oxygen concentrations, perform microaerophilic oxygen respiration, and preferentially associate with soil particles represents an ecophysiology that distinguishes A. dehalogenans from other known U(VI)-reducing bacteria in area 3, and these features may play roles for stabilizing immobilized radionuclides in situ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798628PMC
http://dx.doi.org/10.1128/AEM.01854-09DOI Listing

Publication Analysis

Top Keywords

anaeromyxobacter dehalogenans
8
oak ridge
8
ifc site
8
dehalogenans cells
8
unique ecophysiology
4
ecophysiology uvi-reducing
4
uvi-reducing bacteria
4
bacteria revealed
4
revealed evaluation
4
evaluation oxygen
4

Similar Publications

sp. nov., sp. nov. and sp. nov., isolated from paddy soils.

Int J Syst Evol Microbiol

October 2022

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

Three bacterial strains (Red232, Red267 and Red630) were isolated from paddy soils sampled in Japan. Cells of these strains were Gram-stain-negative, facultative anaerobic, long rod-shaped with monotrichous flagella or pilus-like structures for motility, and formed red colonies on agar plates. Phylogenetic trees based on 16S rRNA gene and multiple single-copy gene sequences showed that the three strains formed a cluster with the type strains of species, independent from any other strain genera.

View Article and Find Full Text PDF

The reduction of nitrous oxide (NO) to N represents the key terminal step in canonical denitrification. Nitrous oxide reductase (NosZ), the enzyme associated with this biological step, however, is not always affiliated with denitrifying microorganisms. Such organisms were shown recently to possess a Clade II (atypical) nosZ gene, in contrast to Clade I (typical) nosZ harbored in more commonly studied denitrifiers.

View Article and Find Full Text PDF

Sinorhizobium meliloti Chemoreceptor McpV Senses Short-Chain Carboxylates via Direct Binding.

J Bacteriol

December 2018

Virginia Tech, Department of Biological Sciences, Blacksburg, Virginia, USA

is a soil-dwelling endosymbiont of alfalfa that has eight chemoreceptors to sense environmental stimuli during its free-living state. The functions of two receptors have been characterized, with McpU and McpX serving as general amino acid and quaternary ammonium compound sensors, respectively. Both receptors use a dual Cache (lcium channels and motaxis receptors) domain for ligand binding.

View Article and Find Full Text PDF

In an open field trial on two agricultural soils in NW Italy, the impact of two seed-applied biostimulants on the rhizosphere bacterial community of young maize plants was evaluated. The 16S rDNA profiling was carried out on control and treated plant rhizosphere samples collected at the 4-leaf stage and on bulk soil. In both soils, the rhizospheres were significantly enriched in Proteobacteria, Actinobacteria, and Bacteriodetes, while the abundances of Acidobacteria, Cloroflexi and Gemmatimonadetes decreased compared with bulk soil.

View Article and Find Full Text PDF

The versatile soil bacterium lacks the hallmark denitrification genes and (encoding NO→NO reductases) and couples growth to NO reduction to NH (respiratory ammonification) and to NO reduction to N also grows by reducing Fe(III) to Fe(II), which chemically reacts with NO to form NO (i.e., chemodenitrification).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!