Previously, we observed that heterochromatic 4 and Y chromosomes that had experienced breakage in the male germline were frequently transmitted to progeny. Their behavior suggested that they carried functional telomeres. Here we show that efficient healing by de novo telomere addition is not unique to heterochromatic breaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815927PMC
http://dx.doi.org/10.1534/genetics.109.109934DOI Listing

Publication Analysis

Top Keywords

novo telomere
8
telomere addition
8
healing euchromatic
4
euchromatic chromosome
4
chromosome breaks
4
breaks efficient
4
efficient novo
4
addition drosophila
4
drosophila melanogaster
4
melanogaster observed
4

Similar Publications

TERT de novo mutation-associated dyskeratosis congenita and porto-sinusoidal vascular disease: a case report.

J Med Case Rep

January 2025

Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.

Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.

View Article and Find Full Text PDF

Given the presence of highly repetitive genomic regions such as subtelomeric regions, understanding human genomic evolution remains challenging. Recently, long-read sequencing technology has facilitated the identification of complex genetic variants, including structural variants (SVs), at the single-nucleotide level. Here, we resolved SVs and their underlying DNA damage-repair mechanisms in subtelomeric regions, which are among the most uncharted genomic regions.

View Article and Find Full Text PDF

Genome-Wide Tool for Sensitive de novo Identification and Visualisation of Interspersed and Tandem Repeats.

Bioinform Biol Insights

December 2024

Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.

Genomic repeats are functionally ubiquitous structural units found in all genomes. Studying these repeats of different origins is essential for understanding the evolution and adaptation of a given organism. These repeating patterns have manifold signatures and structures with varying degrees of homology, making their identification challenging.

View Article and Find Full Text PDF

Egyptian clover (Trifolium alexandrinum L.), also known as berseem clover, is an important forage crop to semi-arid conditions that was domesticated in ancient Egypt in 5,5000 BCE and introduced and well adapted to numerous countries including India, Pakistan, Turkey, and Mediterranean region. Despite its agricultural importance, genomic research on Egyptian clover has been limited to developing efficient modern breeding programs.

View Article and Find Full Text PDF

Telomerase-Mediated Anti-Ageing Interventions.

Subcell Biochem

December 2024

School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.

The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!