ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine.

Proc Natl Acad Sci U S A

Translational Medicine Branch and Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Medical Genetics Branch, National Institutes of Health, Bethesda, MD 20892, USA.

Published: November 2009

Defensins (e.g., human neutrophil peptides, or HNPs) contribute to innate immunity through diverse actions, including microbial killing; high concentrations are present in the lung in response to inflammation. Arginines are critical for HNP activity, which is decreased by their replacement with ornithine. ADP-ribosyltransferases (ARTs) catalyze transfer of ADP-ribose from NAD to an acceptor arginine in a protein substrate, whereas ADP-ribosylarginine hydrolases release ADP-ribose. ART1 on the surface of airway epithelial cells ADP-ribosylated HNP-1 specifically on arginines 14 and 24, with ADP-ribosylation altering biological activity. Di- and mono-ADP-ribosylated HNP-1 were isolated from bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF), suggesting a role for ADP-ribosylation in disease. In the present study, we observed that ART1-catalyzed ADP-ribosylation of HNP-1 in vitro generated a product with ADP-ribose on arginine 24, and ornithine replacing arginine at position 14. We hypothesized that ADP-ribosylarginine is susceptible to a nonenzymatic hydrolytic reaction yielding ornithine. On incubation of di- or mono-ADP-ribosyl-HNP-1 at 37 degrees C, ADP-ribosylarginine was partially replaced by ornithine, whereas ornithine was not detected by amino acid analysis and mass spectrometry of unmodified HNP-1 incubated under the same conditions. Further, ornithine was produced from the model compound, ADP-ribosylarginine. BALF from an IPF patient contained ADP-ribosyl-HNP-ornithine as well as mono- and di-ADP-ribosylated HNP-1, consistent with in vivo conversion of arginine to ornithine. Targeted ADP-ribosylation of specific arginines by transferases, resulting in their replacement with ornithine, is an alternative pathway for regulation of protein function through posttranslational modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785246PMC
http://dx.doi.org/10.1073/pnas.0910633106DOI Listing

Publication Analysis

Top Keywords

ornithine
9
amino acid
8
replacement ornithine
8
arginine ornithine
8
hnp-1
6
adp-ribosylation
5
arginine
5
adp-ribosylation human
4
human defensin
4
defensin hnp-1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!