Gene expression profiling in brain regions of a rat model displaying schizophrenia-related features.

Behav Brain Res

Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour & Nijmegen Centre for Molecular Life Sciences, Faculty of Science, Radboud University Nijmegen, RT282, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.

Published: March 2010

Animal models allow insights into complex neurodevelopmental disorders. Apomorphine-susceptible rats (so-called APO-SUS rats) provide a model that displays a complex phenotype with schizophrenia-related features and together with its phenotypic counterpart (APO-UNSUS rats) has been independently generated twice (original and replicate rat lines). To understand the molecular basis underlying this phenotype, we here performed mRNA expression profiling in various APO-SUS and APO-UNSUS rat brain regions. The expression of only the previously reported Aph-1b and the newly discovered KCnIP1 (a member of the potassium channel-interacting protein family that is known to modulate neuronal channel activity) was significantly different in the APO-SUS and APO-UNSUS rats from both the original and replicate rat lines. Thus, KCnIP1 may constitute a novel candidate gene playing a role in the complex phenotype of the APO-SUS/APO-UNSUS rat model and further studies on this gene are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2009.10.042DOI Listing

Publication Analysis

Top Keywords

expression profiling
8
brain regions
8
rat model
8
schizophrenia-related features
8
complex phenotype
8
apo-unsus rats
8
original replicate
8
replicate rat
8
rat lines
8
apo-sus apo-unsus
8

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Previous studies in sports science suggested that regular exercise has a positive impact on human health. However, the effects of endurance sports and their underlying mechanisms are still not completely understood. One of the main debates regards the modulation of immune dynamics in high-intensity exercise.

View Article and Find Full Text PDF

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

Irritable bowel syndrome (IBS) is a multifactorial condition with heterogeneous pathophysiology, including intestinal permeability alterations. The aim of the present study was to assess the ability of a probiotic blend (PB) consisting of two strains (CECT7484 and CECT7485) and one strain of (CECT7483) to recover the permeability increase induced by mediators from IBS mucosal biopsies and to highlight the underlying molecular mechanisms. Twenty-one IBS patients diagnosed according to ROME IV criteria (11 IBS-D and 10 IBS-M) and 7 healthy controls were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!