West Nile virus is an arthropod-borne flavivirus that has caused substantial morbidity and mortality to animals as well as humans since its introduction in to the New York area in 1999. Given that there are no antiviral drugs available for treatment of the disease, vaccines provide an efficacious alternative to control this disease. Herein we describe an attenuated WNV strain developed by the ablation of the glycosylation sites in the envelope (E) and non-structural 1 (NS1) proteins. This E(154S)/NS1(130A/175A/207A) strain showed modest reduction in multiplication kinetics in cell culture and small plaque phenotype compared to the parental NY99 strain yet displayed greater than a 200,000-fold attenuation for mouse neuroinvasiveness compared to the parental strain. Mice infected with 1000PFU of E(154S)/NS1(130A/175A/207A) showed undectable viremia at either two or three days post infection; nonetheless, high titer neutralizing antibodies were detected in mice inoculated with low doses of this virus and protected against lethal challenge with a 50% protective dose of 50PFU.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2009.10.112DOI Listing

Publication Analysis

Top Keywords

west nile
8
nile virus
8
compared parental
8
development characterization
4
characterization non-glycosylated
4
non-glycosylated ns1
4
ns1 mutant
4
mutant viruses
4
viruses potential
4
potential candidate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!