Background: Nasal polyposis is a chronic inflammatory disease of the upper respiratory tract that affects around 2% of the population and almost 67% of patients with aspirin-intolerant asthma. Polyps are rich in mast cells and eosinophils, resulting in high levels of the proinflammatory cysteinyl leukotrienes.

Objectives: To better understand the role of the proinflammatory leukotrienes in nasal polyposis, we asked the following questions: (1) How do nasal polyps produce leukotriene C(4) (LTC(4))? (2) Can LTC(4) feed back in a paracrine way to maintain mast cell activation? (3) Could a combination therapy targeting the elements of this feed-forward loop provide a novel therapy for allergic disease?

Methods: We have used immunohistochemistry, enzyme immunoassay, and cytoplasmic calcium ion (Ca(2+)) imaging to address these questions on cultured and acutely isolated human mast cells from patients with polyposis.

Results: Ca(2+) entry through store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in polyps produced LTC(4) in a manner dependent on protein kinase C. LTC(4) thus generated activated mast cells through cysteinyl leukotriene type I receptors. Hence Ca(2+) influx into mast cells stimulates LTC(4) production, which then acts as a paracrine signal to activate further Ca(2+) influx. A combination of a low concentration of both a CRAC channel blocker and a leukotriene receptor antagonist was as effective at suppressing mast cell activation as a high concentration of either antagonist alone.

Conclusion: A drug combination directed against CRAC channels and leukotriene receptor antagonist suppresses the feed-forward loop that leads to aberrant mast cell activation. Hence our results identify a new potential strategy for combating polyposis and mast cell-dependent allergies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2009.08.030DOI Listing

Publication Analysis

Top Keywords

mast cells
16
nasal polyposis
12
mast cell
12
ca2+ release-activated
8
release-activated ca2+
8
channels leukotriene
8
mast
8
feed-forward loop
8
crac channels
8
ca2+ influx
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!