African trypanosomes possess high levels of alanine aminotransferase (EC 2.6.1.2), although the function of their activity remains enigmatic, especially in slender bloodstream forms where the metabolism of ketoacids does not occur. Therefore, the gene for alanine aminotransferase enzyme in Trypanosoma brucei (TbAAT) was characterized and its function assessed using a combination of RNA interference and gene knockout approaches. Surprisingly, as much as 95% or more of the activity appears to be unnecessary for growth of either bloodstream or procyclic forms respiring on glucose. A combination of RNA interference and NMR spectroscopy revealed an important role for the activity in procyclic forms respiring on proline. Under these conditions, the major end product of proline metabolism is alanine, and a reduction in TbAAT activity led to a proportionate decrease in the amount of alanine excreted along with an increase in the doubling time of the cells. These results provide evidence of a role for alanine aminotransferase in the metabolism of proline in African trypanosomes by linking glutamate produced by the initial oxidative steps of the pathway with pyruvate produced by the final oxidative step of the pathway. This step appears to be essential when proline is the primary carbon source, which is likely to be the physiological situation in the tsetse fly vector.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2009.07432.x | DOI Listing |
Nutrients
January 2025
College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.
View Article and Find Full Text PDFNutrients
January 2025
Interdisciplinary Laboratory in Neurosciences, Physiology, and Psychology: Physical Activity, Health, and Learning (LINP2), UFR STAPS, Paris Nanterre University, 92000 Nanterre, France.
Aims: To evaluate the effectiveness of a dual approach involving time-restricted eating (TRE) at different times of the day combined with physical activity (PA) on functional capacity and metabolic health in overweight or obese women.
Methods: Random allocation of sixty-one participants into four groups: early time-restricted eating plus physical activity (ETRE-PA, n = 15, 31.8 ± 10.
Nutrients
January 2025
Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland.
Background/objectives: Despite the abundant body of evidence linking high-intensity interval training (HIIT) to cardiometabolic markers, little is known about how HIIT affects liver enzymes, particularly in obese adolescents. This study aimed to investigate the effects of HIIT on metabolic dysfunction-associated steatotic liver disease (MASLD)-related biomarkers in overweight/obese adolescent girls.
Methods: Thirty-three overweight/obese adolescent girls (age, 17.
Nutrients
December 2024
Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China.
: The 1-h post-load plasma glucose was proposed to replace the current OGTT criteria for diagnosing prediabetes/diabetes. However, it remains unclear whether it is superior in identifying progressive metabolic dysfunction-associated steatotic liver disease (MASLD), and thus we aimed to clarify this issue. : Consecutive Asian participants (non-MASLD, = 1049; MASLD, = 1165) were retrospectively enrolled between June 2012 and June 2024.
View Article and Find Full Text PDFLipids Health Dis
January 2025
The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!