Background Information: The common phenotypes of cancer and stem cells suggest that cancers arise from stem cells. Oestrogen is one of the few most important determinants of breast cancer, as shown by several lines of convincing evidence. We have previously reported a human breast epithelial cell type (Type 1 HBEC) with stem cell characteristics and ER alpha (oestrogen receptor alpha) expression. A tumorigenic cell line, M13SV1R2, was developed from this cell type after SV40 (simian virus 40) large T-antigen transfection and X-ray irradiation. The cell line, however, was not responsive to oestrogen for cell growth or tumour development. In the present study, we tested the hypothesis that deprivation of growth factors and hormones may change the tumorigenicity and oestrogen response of this cell line.
Results: The M13SV1R2 cells lost their tumorigenicity after culturing in a growth factor/hormone-deprived medium for >10 passages (referred to as R2d cells) concomitant with the expression of two tumour suppressor genes, namely those coding for maspin and alpha 6 integrin. However, these cells acquired oestrogen responsiveness in cell growth and tumour development. By immunocytochemistry, Western blotting and flow cytometry analysis, oestrogen treatment of R2d cells was found to induce many important effects related to breast carcinogenesis, namely: (i) the emergence of a subpopulation of cells expressing CD44+/high/CD24-/low breast tumour stem cell markers; (ii) the induction of EMT (epithelial-to-mesenchymal transition); (iii) the acquisition of metastatic ability; and (iv) the expression of COX-2 (cyclo-oxygenase-2) through a CD44-mediated mechanism.
Conclusion: An oestrogen-responsive cell line with ER alpha and CD44+/CD24-/low expression can be derived from breast epithelial stem cells. The tumorigenicity and oestrogen response of these cells could depend on the cell culture conditions. The findings of this study have implications in regard to the origins of (1) ER alpha-positive breast cancers, (2) CD44+/CD24-/low breast tumour stem cells and (3) the metastatic ability of breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BC20090132 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFBr J Dermatol
January 2025
Department of Dermatology, Taiyuan Central Hospital, 030001,Taiyuan, China.
Hum Reprod
January 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?
Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.
What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!