Large-area imager of hydrogen leaks in fuel cells using laser-induced breakdown spectroscopy.

Rev Sci Instrum

Max-Planck Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany.

Published: October 2009

We constructed a simple device, which utilized laser-induced breakdown spectroscopy to image H2 gas leaking from the surfaces of hydrogen fuel cells to ambient air. Nanosecond laser pulses of wavelength lambda=532 nm emitted from a neodymium-doped yttrium aluminum garnet laser were first compressed to a pulse length Deltat<1 ns using a stimulated Brillouin backscattering cell. Relay-imaging optics then focused this beam onto the H(2) leak and initiated the breakdown plasma. The Balmer-alpha (H-alpha) emission that emerged from this was collected with a 2-m-long macrolens assembly with a 90-mm-diameter image area, which covered a solid angle of approximately 1 x 10(-3)pi steradians seen from the plasma. The H-alpha light was isolated by two 100-mm-diameter interference filters with a 2 nm bandpass, and imaged by a thermoelectrically cooled charge-coupled device camera. By scanning the position of the laser focus, the spatial distribution of H2 gas over a 90-mm-diameter area was photographed with a spatial resolution of < or = 5 mm. Photoionization of the water vapor in the air caused a strong H-alpha background. By using pure N2 as a buffer gas, H2 leaks with rates of <1 cc/min were imaged. We also studied the possibilities of detecting He, Ne, or Xe gas leaks.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3244089DOI Listing

Publication Analysis

Top Keywords

fuel cells
8
laser-induced breakdown
8
breakdown spectroscopy
8
large-area imager
4
imager hydrogen
4
hydrogen leaks
4
leaks fuel
4
cells laser-induced
4
spectroscopy constructed
4
constructed simple
4

Similar Publications

The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of HS and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics.

View Article and Find Full Text PDF

Designing transition metal oxide (TMO)/porous carbon composite materials for the oxygen reduction reaction (ORR) is a promising strategy in high-performance fuel cell technology. In this study, we used the isolation effect and pore-creating properties of Zn2+ to fabricate a composite material comprising ultrasmall Fe3O4 particles anchored on hierarchically N-doped porous carbon nanospheres. This material, referred to as CPZ1.

View Article and Find Full Text PDF

Anion exchange membrane fuel cells (AEMFCs) are one of the ideal energy conversion devices. However, platinum (Pt), as the benchmark catalyst for the hydrogen oxidation reaction (HOR) of AEMFCs anodes, still faces issues of insufficient performance and susceptibility to CO poisoning. Here, we report the Joule heating-assisted synthesis of a small sized RuPt single-atom alloy catalyst loaded on nitrogen-doped carbon modified with single W atoms (s-RuPt@W/NC), in which the near-range single Ru atoms on the RuPt nanoparticles and the long-range single W atoms on the support simultaneously modulate the electronic structure of the active Pt-site, enhancing alkaline HOR performance of s-RuPt@W/NC.

View Article and Find Full Text PDF

Proton Exchange Membrane with Dual-Active-Center Surpasses the Conventional Temperature Limitations of Fuel Cells.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

High temperature-proton exchange membrane fuel cells (HT-PEMFC) call for ionomers with low humidity dependence and elevated-temperature resistance. Traditional perfluorosulfonic acid (PFSA) ionomers encounter challenges in meeting these stringent requirements. Herein, this study reports a perfluoroimide multi-acid (PFMA) ionomer with dual active centers achieved through the incorporation of sulfonimide and phosphonic acid groups into the side chain.

View Article and Find Full Text PDF

Converting Fe-N-C single-atom catalyst to a new FeNxSey cluster catalyst for proton-exchange membrane fuel cells.

Angew Chem Int Ed Engl

January 2025

Tianjin University, School of Materials science and engineering, School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, CHINA.

Fe-N-C catalyst is the most promising alternative to platinum catalyst for proton-exchange membrane fuel cells (PEMFCs), however its high performance cannot be maintained for a long enough time in device. The construction of a new Fe coordination environment that is different from the square-planar Fe-N 4 configuration in Fe-N-C catalyst is expected to break current stability limits, which however remains unexplored. Here, we report the conversion of Fe-N-C to a new FeNxSey catalyst, where the Fe sites are three-dimensionally (3D) co-coordinated by N and Se atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!