This study utilized a mass-resolved detection of ClOOCl to determine its photodissociation cross section, which is the product of the absorption cross section and dissociation quantum yield. An effusive molecular beam of ClOOCl was generated and its photodissociation probability was determined through measuring the decrease in the ClOOCl beam intensity upon laser irradiation. By comparing with a reference molecule, the absolute cross sections of ClOOCl were obtained without knowing its absolute concentration. The determined cross section of ClOOCl at 248.4 nm is (8.85+/-0.42)x10(-18) cm(2) at 200 K, significantly larger than previously reported values. The temperature dependence of the cross section was investigated at 248.4 nm in the range of 160-260 K; only a very small and negative temperature effect was observed. Because 248.4 nm is very close to the peak of the UV absorption band of ClOOCl, this work provides a new calibration point for normalizing relative absorption spectra of ClOOCl. In this work, the photodissociation cross section at 266 nm and 200 K was also reported to be (4.13+/-0.21)x10(-18) cm(2).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3257682DOI Listing

Publication Analysis

Top Keywords

photodissociation cross
12
cross sections
8
cloocl
8
sections cloocl
8
cloocl 2484
8
cloocl work
8
cross
6
photodissociation
4
0
4
2484 266
4

Similar Publications

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.

View Article and Find Full Text PDF

Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.

View Article and Find Full Text PDF

Photofragment translational spectroscopy has been used to characterize the energetics and the cross sections for photodissociation of CHI and CFI adsorbed on thin films of a variety of aromatic molecules, initiated by near-UV light. Thin films (nominally 10 monolayers) of benzene, five substituted benzenes and two naphthalenes have been employed to study systematic changes in the photochemical activity. Illumination of these systems with 248 nm light is found to result in a dissociation process for the CHI and CFI mediated by initial absorption in the aromatic thin film, followed by electronic energy transfer (EET) to the dissociating species.

View Article and Find Full Text PDF

We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!