Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An analysis of the effect of a cosolvent on the association of a solute in solution using the Kirkwood-Buff theory of solutions is presented. The approach builds on the previous results of Ben-Naim by extending the range of applicability to include any number of components at finite concentrations in both closed and semiopen systems. The derived expressions, which are exact, provide a foundation for the analysis and rationalization of cosolvent effects on molecular and biomolecular equilibria including protein association, aggregation, and cellular crowding. A slightly different view of cellular crowding is subsequently obtained. In particular, it is observed that the addition of large cosolvents still favors the associated form even when traditional excluded volume effects are absent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780464 | PMC |
http://dx.doi.org/10.1063/1.3253299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!