Optical gain in strongly confined colloidal semiconductor quantum dots is measured using state resolved pump/probe spectroscopy. Though size tunable optical amplification has been previously reported for these materials, the influence of confinement enhanced multiexcitonic interactions has limited prior demonstrations to specific particle sizes or host media. Here we show that the influence of the interfering multiexcitonic interactions, and hence the development of optical gain, is dependent on the identity of the initially prescribed excitonic state. By maintaining a constant excitonic state in the size tunable electronic structure of these materials, we recover the predicted universal development of optical gain, reflected by size-independent occupation thresholds, and differential gains. In addition, we explicitly compare the influence of surface passivation on the development and lifetime of the optical gain. Furthermore, we introduce a general, state-resolved pumping scheme which enables control over the optical gain spectrum. The capacity to manipulate the optical gain spectra of these spherically confined systems is evident in both the measured stimulated emission and amplified spontaneous emission. We anticipate that state-resolved optical excitation will be a useful method of enabling the development and manipulation of optical gain in any quantized nanostructure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3254199 | DOI Listing |
Alcohol Clin Exp Res (Hoboken)
January 2025
Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA.
Background: While alcohol has been shown to impair eye movements in young adults, little is known about alcohol-induced oculomotor impairment in older adults with longer histories of alcohol use. Here, we examined whether older adults with chronic alcohol use disorder (AUD) exhibit more acute tolerance than age-matched light drinkers (LD), evidenced by less alcohol-induced oculomotor impairment and perceived impairment.
Method: Two random-order, double-blinded laboratory sessions with administration of alcohol (0.
Clin Transl Radiat Oncol
March 2025
Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
Background And Purpose: Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs).
View Article and Find Full Text PDFWave mixing (WM) techniques are crucial for applications such as supercontinuum generation, frequency conversion, and high-dimensional quantum encoding. However, their efficiency is often limited by complex phase-matching requirements, and current insights into phase-matching mechanisms for high-order WM remain limited. To address this, compact optical path configurations with high-peak-power, synchronous, multicolor ultrafast laser sources are needed to enhance high-order wave-mixing efficiency.
View Article and Find Full Text PDFFluorescent antennas (FAs) exhibit considerable promise in optical wireless communication (OWC), primarily due to their advantages over conventional optical systems in terms of optical gain and field of view (FoV). This paper presents a COMSOL-based model designed to optimize external light-concentrating structures for FAs, with its accuracy validated through both qualitative and quantitative comparisons. Leveraging refractive index modulation and the conservation of optical étendue, two distinct light-concentrating structures are developed.
View Article and Find Full Text PDFWe report on the growth of a 2.86 at.% Ho:YGG crystal using the optical floating zone technique in an oxygen-rich environment, followed by the study of its structure, optical spectroscopy and first demonstration of continuous-wave laser operation at 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!