Molecularly defined antibody conjugation through a selenocysteine interface.

Biochemistry

Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1203, USA.

Published: December 2009

Antibody conjugates have broad utility in basic, preclinical, and clinical applications. Conventional antibody conjugation through the amine group of lysine or the thiol group of cysteine residues yields heterogeneous products of undefined stoichiometry and considerable batch-to-batch variability. To preserve the two hallmarks of the antibody molecule, precision and predictability, methods that enable site-specific antibody conjugation are in high demand. On the basis of a mammalian cell expression system, we describe the utilization of the 21st natural amino acid selenocysteine for the generation of IgG and Fab molecules with unique nucleophilic reactivity that affords site-specific conjugation to electrophilic derivatives of biotin, fluorescein, and poly(ethylene glycol). The resulting antibody conjugates were found to fully retain their antigen binding capability and, in the case of IgG, the ability to mediate effector functions. Gain of function was demonstrated in vitro and in vivo. While these antibody conjugates are relevant for a variety of proteomic, diagnostic, and therapeutic applications, they also constitute a proof of principle for the generation of molecularly defined antibody-drug conjugates and radioimmunoconjugates. Compared to other site-specific antibody conjugation methods, selenocysteine interface technology (i) only involves a minor modification at the C-terminus that does not interfere with disulfide bridges, (ii) does not require activation, and (iii) generates unique 1:1 stoichiometries of biological and chemical components. Collectively, our method affords the generation of highly defined antibody conjugates with broad utility from proteomic applications to therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825887PMC
http://dx.doi.org/10.1021/bi901744tDOI Listing

Publication Analysis

Top Keywords

antibody conjugation
16
antibody conjugates
16
antibody
9
molecularly defined
8
defined antibody
8
selenocysteine interface
8
conjugates broad
8
broad utility
8
site-specific antibody
8
conjugation
5

Similar Publications

Background: Black women and other minorities have higher age adjusted incidence risk for cervical and endometrial cancer than White women. However, the extent of racial and ethnic disparities in clinical trial enrollment among studies performed mainly in North America and Europe for gynecologic malignancy is unknown.

Objective: This study analyzed enrollment rates by race/ethnicity in trials that led to Food and Drug Administration (FDA) approvals for gynecological cancers from 2010 to 2024.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Peptide Aptamer-Paclitaxel Conjugates for Tumor Targeted Therapy.

Pharmaceutics

December 2024

Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China.

: Traditional paclitaxel therapy often results in significant side effects due to its non-specific targeting of cancer cells. Peptide aptamer-paclitaxel conjugates present a promising alternative by covalently attaching paclitaxel to a versatile peptide aptamer via a linker. Compared to antibody-paclitaxel conjugates, peptide aptamer-paclitaxel conjugates offer several advantages, including a smaller size, lower immunogenicity, improved tissue penetration, and easier engineering.

View Article and Find Full Text PDF

Thymoglobulin is used to prevent allograft rejection and is being explored at low doses as intervention immunotherapy in type 1 diabetes. Thymoglobulin consists of a diverse pool of rabbit antibodies directed against many different targets on human thymocytes that can also be expressed by other leukocytes. Since Thymoglobulin is generated by injecting rabbits with human thymocytes, this conceivably leads to differences between Thymoglobulin batches.

View Article and Find Full Text PDF

A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!