Frequency effects during acoustic cavitation in surfactant solutions.

J Phys Chem B

Particulate Fluids Processing Centre, School of Chemistry and Department of Chemical and Biomolecular Engineering, University of Melbourne, VIC 3010, Australia.

Published: December 2009

The acoustic cavitation-induced events, multibubble sonoluminescence (MBSL) and initial growth of MBSL have been studied in surfactant solutions and correlated with bubble coalescence data at three different ultrasound frequencies. For an ionic surfactant, both the number of ultrasonic pulses required to reach a steady state MBSL intensity (N(crit)) and the magnitude of this intensity increases to a maximum as the surfactant concentration increases and then falls again. The total bubble volume generated for a fixed sonication time, which is indirectly related to bubble coalescence, similarly falls as surfactant concentration increases and then rises again. These effects are caused by a combination of electrostatic and coalescence factors at relatively low surfactant concentrations and the screening of the electrostatic factor as surfactant concentration increases further. The peak in coalescence inhibition occurs almost at the same surfactant concentrations as the acoustic frequency is increased; however, the concentrations at which peaks in MBSL and N(crit) occur vary at different frequencies. These results have been discussed in terms of coalescence, electrostatic interactions, rectified diffusion growth, and the adsorption kinetics of the surfactants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp9083458DOI Listing

Publication Analysis

Top Keywords

surfactant concentration
12
concentration increases
12
surfactant
8
surfactant solutions
8
bubble coalescence
8
surfactant concentrations
8
coalescence
5
frequency effects
4
effects acoustic
4
acoustic cavitation
4

Similar Publications

Enhancing Droplet Spreading on a Hydrophobic Plant Surface by Surfactant/Cellulose Nanocrystal Complexes.

ACS Nano

January 2025

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern.

View Article and Find Full Text PDF

Micelle-enabled bromination of α-oxo ketene dithioacetals: mild and scalable approach enzymatic catalysis.

Org Biomol Chem

January 2025

Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

The bromination of α-oxo ketene dithioacetals using KBr/HO, catalyzed by vanadium chloroperoxidase (VCPO), has been successfully demonstrated. A comparative study of enzymatic processes "on water" "in water", using 2 wt% of the surfactant TPGS-750-M revealed that the in-water protocol not only provides higher yields but also accommodates a broader substrate scope. This bromination method in an aqueous micellar medium enabled the preparation of brominated α-oxo ketene dithioacetals in fair to excellent yields (23 examples).

View Article and Find Full Text PDF

The construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.

View Article and Find Full Text PDF

Drug Delivery Applications of Hydrophobic Deep Eutectic Solvent-in-Water Nanoemulsions: A Comparative Analysis of Ultrasound Emulsification and Membrane-Assisted Nanoemulsification.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.

The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.

View Article and Find Full Text PDF

Substantial amounts of oily wastewater are inevitably generated during petroleum extraction and petrochemical production, and the effective treatment of these O/W emulsions is crucial for environmental protection and resource recovery. The development of an environmentally friendly, cost-effective, and efficient demulsifier that operates effectively at low concentrations remains a significant challenge. This study introduces an eco-friendly ionic liquid demulsifier, Cotton Cellulose-Dodecylamine (CCDA), which demonstrates exceptional demulsification performance at low concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!