Background: Although evidence exists that regulatory T cells (Tregs) can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs) are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro.
Principal Findings: Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN) microenvironment. We found that pro-inflammatory chemokines -- CCL2 (MCP-1) and CCL3 (MIP-la) -- are secreted in the LN early (24 h) after T cell activation, that this secretion is dependent on antigen-specific DC-T cell interactions, and that it was inversely related to the frequency of Tregs specific for the same antigen. Furthermore, we demonstrate that Tregs modify the chemoattractant properties of antigen-presenting DCs, which, as the frequency of Tregs increases, fail to produce CCL2 and CCL3 and to attract antigen-specific T cells.
Conclusions: These results substantiate a major role of Tregs in LN patterning during antigen-specific immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770125 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007696 | PLOS |
Hepatol Commun
February 2025
University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France.
Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322.
Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China School of Biomedical Engineering, Department of Polymer Science and Engineering, 96 Jinzhai Road, 230026, Hefei, CHINA.
Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.
View Article and Find Full Text PDFSwiss Med Wkly
January 2025
Department of Internal Medicine, Clinic for Medical Oncology and Hematology, Municipal Hospital Zurich Triemli, Zurich, Switzerland.
Introduction: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare disease, with unique diagnostic challenges and often dismal outcome. There are no widely accepted treatment guidelines available. Lymphoma-like regimens with or without autologous or allogenic transplantation were the cornerstone of most therapeutic concepts.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100, Novara, Italy.
Major Depressive Disorder (MDD) is a widespread psychiatric condition impacting social and occupational functioning, making it a leading cause of disability. The diagnosis of MDD remains clinical, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 criteria, as biomarkers have not yet been validated for diagnostic purposes or as predictors of treatment response. Traditional treatment strategies often follow a one-size-fits-all approach obtaining suboptimal outcomes for many patients who fail to experience response or recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!