Dynamics of HIV-1 assembly and release.

PLoS Pathog

Physical Chemistry, Department of Chemistry and Biochemistry, Munich Center for Integrated Protein Science (CiPSM) and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.

Published: November 2009

Assembly and release of human immunodeficiency virus (HIV) occur at the plasma membrane of infected cells and are driven by the Gag polyprotein. Previous studies analyzed viral morphogenesis using biochemical methods and static images, while dynamic and kinetic information has been lacking until very recently. Using a combination of wide-field and total internal reflection fluorescence microscopy, we have investigated the assembly and release of fluorescently labeled HIV-1 at the plasma membrane of living cells with high time resolution. Gag assembled into discrete clusters corresponding to single virions. Formation of multiple particles from the same site was rarely observed. Using a photoconvertible fluorescent protein fused to Gag, we determined that assembly was nucleated preferentially by Gag molecules that had recently attached to the plasma membrane or arrived directly from the cytosol. Both membrane-bound and cytosol derived Gag polyproteins contributed to the growing bud. After their initial appearance, assembly sites accumulated at the plasma membrane of individual cells over 1-2 hours. Assembly kinetics were rapid: the number of Gag molecules at a budding site increased, following a saturating exponential with a rate constant of approximately 5 x 10(-3) s(-1), corresponding to 8-9 min for 90% completion of assembly for a single virion. Release of extracellular particles was observed at approximately 1,500+/-700 s after the onset of assembly. The ability of the virus to recruit components of the cellular ESCRT machinery or to undergo proteolytic maturation, or the absence of Vpu did not significantly alter the assembly kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766258PMC
http://dx.doi.org/10.1371/journal.ppat.1000652DOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
assembly release
12
assembly
9
gag molecules
8
assembly kinetics
8
gag
6
dynamics hiv-1
4
hiv-1 assembly
4
release
4
release assembly
4

Similar Publications

Background: Descemet's membrane endothelial keratoplasty (DMEK) is a highly effective procedure for corneal endothelial dysfunction; however, once a DMEK graft is deployed, repositioning can be challenging. Therefore, this study aimed to evaluate the efficacy of a technique that utilizes infusion and small air bubbles to reposition a misaligned deployed graft.

Methods: This retrospective interventional case series enrolled patients who underwent DMEK between January 2022 and July 2023, including cases where the DMEK graft was attached and unfolded in off-center positions".

View Article and Find Full Text PDF

Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib.

View Article and Find Full Text PDF

SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters.

Nat Commun

January 2025

College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.

Nicotinamide (NAM), a main precursor of NAD+, is essential for cellular fuel respiration, energy production, and other cellular processes. Transporters for other precursors of NAD+ such as nicotinic acid and nicotinamide mononucleotide (NMN) have been identified, but the cellular transporter of nicotinamide has not been elucidated. Here, we demonstrate that equilibrative nucleoside transporter 1 and 2 (ENT1 and 2, encoded by SLC29A1 and 2) drive cellular nicotinamide uptake and establish nicotinamide metabolism homeostasis.

View Article and Find Full Text PDF

Virtual staining from bright-field microscopy for label-free quantitative analysis of plant cell structures.

Plant Mol Biol

January 2025

Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.

The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry.

View Article and Find Full Text PDF

Phthalates are synthetic compounds, well-known plasticizers, with numerous applications and reported to have adverse effects on all living organisms residing in terrestrial and aquatic environments. In this study, the rice (Oryza sativa) seedlings were exposed to di-butyl phthalate (DBP) exogenously for 7 days, with varying concentrations of 0, 200, 400, 800, and 1600 mg/L, to explore the toxicological, physiological, and biochemical consequences by measuring various parameters such as pigment, lipid, and HO (hydrogen peroxide) contents. The biochemical analysis of seedlings showed that the pigments, lipids, and HO concentrations were altered abnormally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!