Expression of the cellular inhibitor of apoptosis protein 1 (cIAP1) is unexpectedly repressed at the level of translation under normal physiological conditions in many cell lines. We have previously shown that the 5' untranslated region of cIAP1 mRNA contains a stress-inducible internal ribosome entry site (IRES) that governs expression of cIAP1 protein. Although inactive in unstressed cells, the IRES supports cap-independent translation of cIAP1 in response to endoplasmic reticulum stress. To gain an insight into the mechanism of cIAP1 IRES function, we empirically derived the minimal free energy secondary structure of the cIAP1 IRES using enzymatic cleavage mapping. We subsequently used RNA affinity chromatography to identify several cellular proteins, including nuclear factor 45 (NF45) as cIAP1 IRES binding proteins. In this report we show that NF45 is a novel RNA binding protein that enhances IRES-dependent translation of endogenous cIAP1. Further, we show that NF45 is required for IRES-mediated induction of cIAP1 protein during the unfolded protein response. The data presented are consistent with a model in which translation of cIAP1 is governed, at least in part, by NF45, a novel cellular IRES trans-acting factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017871PMC
http://dx.doi.org/10.1038/cdd.2009.164DOI Listing

Publication Analysis

Top Keywords

translation ciap1
12
ciap1 ires
12
ciap1
11
ires trans-acting
8
trans-acting factor
8
unfolded protein
8
protein response
8
ciap1 protein
8
nf45 novel
8
ires
7

Similar Publications

UBE2Q2 promotes tumor progression and glycolysis of hepatocellular carcinoma through NF-κB/HIF1α signal pathway.

Cell Oncol (Dordr)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, PR China.

Purpose: Metabolic reprogramming, particularly the Warburg effect, plays a crucial role in the onset and progression of tumors. The ubiquitin-conjugating enzyme E2 Q2 (UBE2Q2) has been identified overexpressed in hepatocellular carcinoma (HCC). Our aim was to determine if UBE2Q2 plays a role in regulating glycolysis, contributing to the carcinogenesis of HCC.

View Article and Find Full Text PDF

cIAP2 supports the cell growth-promoting activity of FMR1 in gastric cancer via CARD-RING domains.

Biochem Biophys Res Commun

January 2025

Department of Biology, Kyung Hee University, Seoul, 02447, South Korea. Electronic address:

Fragile X Mental Retardation Protein 1 (FMR1) is a translational repressor crucial for regulating genes in the central nervous system. While a lack of FMR1 expression causes Fragile X Syndrome (FXS), its overexpression is implicated in various cancers, necessitating tight regulation of FMR1 protein levels for normal cell physiology. In this study, we report that FMR1 is upregulated in gastric cancer patients.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous and functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes.

View Article and Find Full Text PDF

Enhancing cell death in B-cell malignancies through targeted inhibition of Bcl-3.

Cell Death Dis

September 2024

Department of Laboratory Medicine, Translational Cancer Research, Lund University, Medicon Village, Lund, Sweden.

The t(14;19)(q32;q13) is a rare recurring translocation found in B-cell lymphoproliferative malignancies, involving the Bcl-3 gene. This chromosomal translocation is often found in patients under the age of 50 and causes a more progressive disease. The Bcl-3 gene encodes a protein belonging to the IκB family of proteins, which tightly regulates NFκB signaling by acting as an activator or repressor of transcription.

View Article and Find Full Text PDF
Article Synopsis
  • Rheumatoid arthritis (RA) is an autoimmune disease that leads to inflammation of the joints, primarily driven by fibroblast-like synoviocytes (FLS) which produce inflammatory substances like TNF-α and IL-6.
  • FLS in RA behave similarly to tumors, proliferating aggressively and resisting cell death, contributing to joint damage.
  • Targeting E3 ubiquitin ligases like cIAP2 may offer potential treatments for RA by reducing inflammation and FLS survival, though the potential side effects of these treatments need further investigation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!