Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of the RGD domain in the Ad5 penton base (Ad5DeltaRGD). However, each of these constructs contained a different transgene cassette, preventing the evaluation of the relative performance of these vectors, an important consideration before the use of these vectors in the clinic. The aim of this study was to evaluate these vectors in the retina and to attempt photoreceptor-specific transgene expression. Methods. Three Ad5-based vectors containing the same expression cassette were generated and injected into the subretinal space of adult mice. Eyes were analyzed for green fluorescence protein expression in flat-mounts, cross-sections, quantitative RT-PCR, and a modified stereological technique. A 257-bp fragment derived from the mouse opsin promoter was analyzed in the context of photoreceptor-specific transgene expression. Results. Each virus tested efficiently transduced the retinal pigment epithelium. The authors found no evidence that Ad5/F35 or Ad5/F37 transduced photoreceptors. Instead, they found that Ad5/F37 transduced Müller cells. Robust photoreceptor transduction by Ad5DeltaRGD was detected. Photoreceptor-specific transgene expression from the 257-bp mouse opsin promoter in the context of Ad5DeltaRGD vectors was found. Conclusions. Adenovirus vectors may be designed with tropism to distinct cell populations. Robust photoreceptor-specific transgene expression can be achieved in the context of Ad5DeltaRGD vectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868406 | PMC |
http://dx.doi.org/10.1167/iovs.09-4367 | DOI Listing |
J Proteomics
August 2022
Department of Otorhinolaryngology, Radboud University Medical Center, 6525GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, 6500GL Nijmegen, the Netherlands. Electronic address:
Mutations in WHRN lead to Usher syndrome type 2d or to non-syndromic hearing impairment. The WHRN-encoded gene product whirlin directly interacts with the intracellular regions of the other two Usher syndrome type 2-associated proteins, usherin and ADGRV1. In photoreceptor cells, this protein complex constitutes fibrous links between the periciliary membrane and the connecting cilium.
View Article and Find Full Text PDFAm J Ophthalmol
July 2022
Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK).
Purpose: To investigate the effect of stanniocalcin-1 (STC-1), a secreted polypeptide exhibiting multiple functions in cell survival and death, on photoreceptor degeneration in a porcine model of retinitis pigmentosa (RP).
Methods: P23H transgenic pigs (TG P23H) and wild-type hybrid littermates were obtained from the National Swine Resource and Research Center. Human recombinant STC-1 was injected intravitreally every 2 weeks from postnatal day 15 (P15) to P75.
Sci Rep
September 2021
Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland.
The photoreceptor-specific nuclear receptor Nr2e3 is not expressed in Nr2e3 mice, a mouse model of the recessively inherited retinal degeneration enhanced S-cone sensitivity syndrome (ESCS). We characterized in detail C57BL/6J Nr2e3 mice in vivo by fundus photography, optical coherence tomography and fluorescein angiography and, post mortem, by histology and immunohistochemistry. White retinal spots and so-called 'rosettes' first appear at postnatal day (P) 12 in the dorsal retina and reach maximal expansion at P21.
View Article and Find Full Text PDFCell Death Dis
October 2020
Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, NSW, 2000, Australia.
Photoreceptors, the primary site of phototransduction in the retina, require energy and metabolites to constantly renew their outer segments. They preferentially consume most glucose through aerobic glycolysis despite possessing abundant mitochondria and enzymes for oxidative phosphorylation (OXPHOS). Exactly how photoreceptors balance aerobic glycolysis and mitochondrial OXPHOS to regulate their survival is still unclear.
View Article and Find Full Text PDFInt J Dev Biol
February 2022
Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Uruguay.
Photoreceptor cells of the vertebrate neural retina originate in the neuroepithelium, and like other neurons, must undergo cell body translocation and polarity transitions to acquire their final functional morphology, which includes features of neuronal and epithelial cells. We analyzed this process in detail in zebrafish embryos using confocal microscopy and electron microscopy. Photoreceptor progenitors were labeled by the transgenic expression of enhanced green fluorescent protein under the regulation of the photoreceptor-specific promoter , and structures of interest were disrupted using morpholino oligomers to knock-down specific genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!