Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells.

Invest Ophthalmol Vis Sci

Centro Avançado de Superfície Ocular and Setor de Córnea e Doenças Externas, Instituto da Visão, Universidade Federal de São Paulo, São Paulo, Brazil.

Published: March 2010

Purpose: To determine the outcome of the use of a tissue-engineered cell sheet composed of human undifferentiated immature dental pulp stem cells (hIDPSC) for ocular surface reconstruction in an animal model of total limbal stem cell deficiency (LSCD).

Methods: LSCD was induced by the application of 0.5 M NaOH to the right eye of rabbits for 25 seconds (mild chemical burn [MCB]) and for 45 seconds (severe chemical burn [SCB]). After 1 month, a superficial keratectomy was performed to remove the fibrovascular pannus that covered the animals' burned corneas. A tissue-engineered hIDPSC sheet was transplanted onto the corneal bed and then covered with deepithelialized human amniotic membrane (AM). In the respective control groups, the denuded cornea was covered with AM only. After 3 months, a detailed analysis of the rabbit eyes was performed with regard to clinical aspect, histology, electron microscopy, and immunohistochemistry.

Results: Corneal transparency of the rabbit eyes that underwent hIDPSC transplantation was improved throughout the follow-up, while the control corneas developed total conjunctivalization and opacification. Rabbits from the MCB group showed clearer corneas with less neovascularization. The clinical data were confirmed by histologic analysis that showed healthy uniform corneal epithelium, especially in the MCB group. The presence of hIDPSC was detected using an anti-hIDPSC antibody. The corneal tissue also showed positive immunostaining with anti-human antibodies. In the control corneas, none of these antigens were detected.

Conclusions: Overall, these data showed that transplantation of a tissue-engineered hIDPSC sheet was successful for the reconstruction of corneal epithelium in an animal model of LSCD.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.09-4029DOI Listing

Publication Analysis

Top Keywords

tissue-engineered cell
8
composed human
8
immature dental
8
dental pulp
8
pulp stem
8
stem cells
8
animal model
8
chemical burn
8
tissue-engineered hidpsc
8
hidpsc sheet
8

Similar Publications

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

3D-printed TiC/polycaprolactone composite scaffold with a DOPA-SDF1 surface modified for bone repair.

Colloids Surf B Biointerfaces

December 2024

Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China. Electronic address:

Large bone defects are a major clinical challenge in bone reconstructive surgery. 3D printing is a powerful technology that enables the manufacture of custom tissue-engineered scaffolds for bone regeneration. Electrical stimulation (ES) is a treatment method for external bone defects that compensates for damaged internal electrical signals and stimulates cell proliferation and differentiation.

View Article and Find Full Text PDF

Angiogenesis-promoting effect of SKP-SC-EVs-derived miRNA-30a-5p in peripheral nerve regeneration by targeting LIF and ANGPT2.

J Biol Chem

December 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China. Electronic address:

Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo pre-vascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration.

View Article and Find Full Text PDF

Vascular-like tissues composed of cells maintaining their shape and structure at any position in a culture dish without the use of gels or other artificial materials are ideal vascular models to test the effects of candidate drugs on cells without adsorption by artificial materials and analysis of structural changes over time. In this study, we aimed to prepare fiber-shaped cell aggregates composed of human umbilical vein endothelial and mesenchymal stem cells as vascular pericytes anchored to the bottom of culture dishes at a defined location using our developed cell self-aggregation technique and dumbbell-shaped culture groove. The fiber-shaped cell aggregates maintained their shape for at least two weeks without rupture, and histological analysis revealed that they formed a unique tissue structure with a gapless endothelial layer on the outer surface and capillary-like structures oriented in the same direction as the long axis of the fiber in the medial side.

View Article and Find Full Text PDF

Background: Current treatments for penile erectile structures reconstruction are limited and remain a great challenge in clinical practice. Tissue engineering techniques using different seed cells and scaffolds to construct a neo-tissue open promising avenues for penile erectile structures repair and replacement and show great promise in the restoration of: structure, mechanical property, and function which matches the original tissue.

Methods: A comprehensive literature review was conducted by accessing the NCBI PubMed, Cochrane, and Google Scholar databases from January 1, 1990, to January, 1, 2022 using the search terms "Tissue engineering, Corpus cavernosum (CC), Tunica albuginea (TA), Acellular Matrix, Penile Reconstruction".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!