Rapid, simultaneous quantitation of mono and dioxygenated metabolites of arachidonic acid in human CSF and rat brain.

J Chromatogr B Analyt Technol Biomed Life Sci

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.

Published: December 2009

Currently, there are few biomarkers to predict the risk of symptomatic cerebral vasospasm (SV) in subarachnoid hemorrhage (SAH) patients. Mono and dioxygenated arachidonic acid metabolites, involved in the pathogenesis of ischemic injury, may serve as indicators of SV. This study developed a quantitative UPLC-MS/MS method to simultaneously measure hydroxyeicosatetraenoic acid (HETE), dihydroxyeicosatrienoic acid (DiHETrE), and epoxyeicosatrienoic acid (EET) metabolites of arachidonic acid in cerebrospinal fluid (CSF) samples of SAH patients. Additionally, we determined the recovery of these metabolites from polyvinylchloride (PVC) bags used for CSF collection. Linear calibration curves ranging from 0.208 to 33.3 ng/ml were validated. The inter-day and intra-day variance was less than 15% at most concentrations with extraction efficiency greater than 73%. The matrix did not affect the reproducibility and reliability of the assay. In CSF samples, peak concentrations of 8,9-DiHETrE, 20-HETE, 15-HETE, and 12-HETE ranged from 0.293 to 24.9 ng/ml. In rat brain cortical tissue samples, concentrations of 20-, 15-, 12-HETE, 8,9-EET, and 14,15-, 11,12-DiHETrE ranged from 0.57 to 23.99 pmol/g wet tissue. In rat cortical microsomal incubates, all 10 metabolites were measured with formation rates ranging from 0.03 to 7.77 pmol/mg/min. Furthermore, 12-HETE and EET metabolites were significantly altered by contact with PVC bags at all time points evaluated. These data demonstrate that the simultaneous measurement of these compounds in human CSF and rat brain can be achieved with a UPLC-MS/MS system and that this method is necessary for evaluation of these metabolites as potential quantitative biomarkers in future clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783610PMC
http://dx.doi.org/10.1016/j.jchromb.2009.10.012DOI Listing

Publication Analysis

Top Keywords

arachidonic acid
12
rat brain
12
mono dioxygenated
8
metabolites arachidonic
8
human csf
8
csf rat
8
sah patients
8
eet metabolites
8
csf samples
8
pvc bags
8

Similar Publications

Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites.

Metabolites

December 2024

Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.

Background/objectives: Milk is one of the main sources of nutrition in people's daily diet, but the fat in milk raises health concerns in consumers. Here, we aimed to elucidate the impact of Buffalo milk and Holstein cow milk consumption on blood lipid health through metabolomics analysis.

Methods: Golden hamsters were administered Murrah Buffalo milk (BM) or Holstein cow milk (HM), and the body weight and serum lipid indicators were tested and recorded.

View Article and Find Full Text PDF

A dysregulated metabolism has been studied as a key aspect of the COVID-19 pathophysiology, but its longitudinal progression in severe cases remains unclear. In this study, we aimed to investigate metabolic dysregulation over time in patients with severe COVID-19 requiring mechanical ventilation (MV). In this single-center, prospective, observational study, we obtained 236 serum samples from 118 adult patients on MV in an ICU.

View Article and Find Full Text PDF

Quantitative profiling of PTM stoichiometry by DNA mass tags.

Bioorg Med Chem

December 2024

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. Electronic address:

Protein post-translational modification (PTM) serves as an important mechanism for regulating protein function. Accurate assay of PTM stoichiometry, or PTM occupancy, which refers to the proportion of proteins that contain specific modifications, is important for understanding the function of PTMs. We previously developed a novel chemoproteomic strategy "STO-MS" to quantify the PTM stoichiometry in complex biological samples, which employs a resolvable polymer mass tag to differentiate modified proteins and utilizes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques to measure PTM stoichiometry.

View Article and Find Full Text PDF

Arsenic is a ubiquitous environmental toxin that can affect normal physiological processes. Although the health impacts of arsenic have been investigated, its influence on hepatic metabolism in obese pregnant women and the underlying mechanisms remain unclear. Multi-omics analysis, including metabolomics and proteomics, can improve the understanding of arsenic-induced hepatotoxicity in obese pregnant women.

View Article and Find Full Text PDF

Background: Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (NSAIDs-ERD) is characterized by altered arachidonic acid (AA) metabolism. Aspirin hypersensitivity is diagnosed using aspirin challenge, while induced sputum is collected to perform cell counts and to identify local biomarkers in induced sputum supernatant (ISS). This study aimed to assess the levels of a newly identified eicosanoid, 15-oxo-eicosatetraenoic acid (15-oxo-ETE), in ISS at baseline and during aspirin-induced bronchospasm in patients with NSAIDs-ERD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!