Polar cod Boreogadus saida were exposed weekly to two doses of dietary crude oil for 4 weeks followed by 2 weeks of depuration. Administered doses corresponded on average to 4 and 9microgSigmaPAHsg(-1)fishweek(-1). Cytochrome P4501A1 (cyp1a1) and glutathione S-transferase (gst) mRNA expression, ethoxyresorufin O-deethylase (EROD) activity and metabolites in the bile showed strong and dose-dependent inductions at 2 and 4 weeks of exposure. Following 2 weeks depuration, mRNA expression of cyp1a1 and gst and PAH metabolites returned to basal levels while EROD activity and GST activity were still induced in the high oil treatment. The mRNA expressions of antioxidant defense genes (catalase, glutathione peroxidase and cytosolic and mitochondrial superoxide dismutase) did not change significantly during the experiment. Catalase activity was significantly depressed at week 2 in the high oil treatment. We conclude that the cyp1a1 mRNA expression, EROD activities and bile metabolites were the most reliable biomarkers of exposure while gst mRNA expression and GST activity were less sensitive and are considered only as complementary. Antioxidant defenses were poor biomarkers to assess effects of crude oil exposure in polar cod.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2009.09.018DOI Listing

Publication Analysis

Top Keywords

mrna expression
16
polar cod
12
crude oil
12
cod boreogadus
8
boreogadus saida
8
saida exposed
8
dietary crude
8
weeks depuration
8
gst mrna
8
erod activity
8

Similar Publications

Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.

View Article and Find Full Text PDF

Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.

View Article and Find Full Text PDF

Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs).

View Article and Find Full Text PDF

Background: Early-stage pancreatic ductal adenocarcinoma (PDAC) is frequently misdiagnosed, contributing to its high mortality rate. Exosomal microRNAs (miRNAs) have emerged as potential biomarkers for the early detection of PDAC.

Aims: This study aimed to evaluate the feasibility of using exosomal miRNAs from PDAC tissues and serum as biomarkers for early detection and prognosis.

View Article and Find Full Text PDF

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!