AI Article Synopsis

  • Complement-dependent cytotoxicity (CDC) is a key function of antibodies sought in cancer therapy, but potent CDC-inducing antibodies are rare due to factors like antigen specificity and antibody isotype.
  • A new high throughput CDC assay was created that is compatible with both 384 and 1536 well formats, enabling efficient screening of large antibody panels during early development stages.
  • The assay is robust, reliable, cost-effective, and easy to use, making it suitable for identifying promising therapeutic antibody candidates with strong CDC potential from large antibody libraries.

Article Abstract

Complement-dependent cytotoxicity (CDC) represents an important Fc-mediated effector function of antibodies and is a quality often sought in candidates for therapeutic antibody development in cancer. Antibodies inducing potent CDC are relatively rare as the ability to induce CDC is strongly dependent on the antigen and epitope recognized as well as antibody isotype. To allow the identification of antibodies with optimal CDC characteristics in early stages of antibody discovery, we developed a homogeneous high throughput CDC assay, compatible with 384 and 1536 well formats and which therefore allows direct functional screening of very large panels of antibodies. Results obtained with our newly developed CDC method are consistent with those obtained with conventional assays. The assay proved to be robust, reliable over a wide reading window, easy to perform with low hands-on, high throughput, cost effective and applicable to crude hybridoma samples as typically available in early hybridoma discovery. In conclusion, we developed a novel high throughput assay for the identification of therapeutic antibody lead candidates with optimal CDC characteristics from large antibody libraries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2009.10.009DOI Listing

Publication Analysis

Top Keywords

high throughput
16
complement-dependent cytotoxicity
8
antibody discovery
8
therapeutic antibody
8
optimal cdc
8
cdc characteristics
8
antibody
7
cdc
7
high
4
throughput screening
4

Similar Publications

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

Bacterial proteome microarray technology in biomedical research.

Trends Biotechnol

January 2025

Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

High-throughput screening of acetogenic strains for growth and metabolite profiles on readily available biomass.

Bioresour Technol

January 2025

Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:

Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.

View Article and Find Full Text PDF

Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.

View Article and Find Full Text PDF

Qingwen Zhike prescription (QWZK), a traditional Chinese medicine (TCM) hospital prescription developed in response to the corona virus disease 2019 (COVID-19) pandemic, has demonstrated efficacy in clinical practice. Nevertheless, its specific antiviral components and mechanisms of action remain unclear. This study screened the antiviral compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Qingwen Zhike prescription and explored the underlying mechanism through chemical composition analysis, serum and lung exposure profiles analysis, high-throughput screening, and transmission electron microscopy (TEM) observation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!