The growing concern on long-term productivity of agroecosystems has emphasized the need to develop management strategies to maintain and protect soil resources, particularly soil organic matter (SOM). Among these, the composting process allows both recycling of the increasing amount of organic waste materials and restoration of the content of organic matter in soil. A sequential chemical fractionation into structurally unbound (SU), weakly bound (WB) and strongly bound (SB) compounds was applied to a bulk compost, and its soluble fractions were extracted in water, either after oxidation of compost suspension with an oxygen flux (TEA), or without oxidation but separated into hydrophilic (HiDOM) and hydrophobic (HoDOM) components. The ratio of hydrophilic over hydrophobic compounds decreased in the order HiDOM > TEA > compost > HoDOM, while TEA and compost showed the largest content of SU and WB components, respectively. Such chemically characterized bulk compost and fractions were tested on maize seedlings grown in sand and in hydroponic conditions, and the effects on plant growth and nitrogen metabolism were measured. The structurally complex bulk compost and the hydrophobic HoDOM fraction negatively affected plant growth, whereas the hydrophilic and less-structured fractions (HiDOM and TEA) showed large positive effects on both growth and enzymatic activities of plants. These results suggest that composted organic matter can become useful to stimulate plant growth if the content of potentially bioavailable hydrophilic and poorly structured components is large. These components may be progressively separated from the compost matrix and contribute to the dynamics of natural organic matter in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf901808sDOI Listing

Publication Analysis

Top Keywords

organic matter
16
bulk compost
12
plant growth
12
compost
8
nitrogen metabolism
8
maize seedlings
8
matter soil
8
hydrophobic hodom
8
hidom tea
8
tea compost
8

Similar Publications

The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.

View Article and Find Full Text PDF

Viedma deracemization mechanisms in self-assembly processes.

Phys Chem Chem Phys

January 2025

Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.

Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.

View Article and Find Full Text PDF

Recyclable Millable PolyureThane based on Enaminone Bonds With Upcycled Mechanical Performance.

Macromol Rapid Commun

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.

Thermoplastic polyurethane (TPU) exhibits re-processable properties, but the properties of TPU is deteriorated during the reprocessing for the oxidation and degradation of polymer chains. Meanwhile, although thermoset polyurethane exhibits excellent mechanical properties, it cannot be recycled for permanent crosslinking. Hence, it's still a challenge to obtain PU which exhibits the balance between the recyclability and mechanical properties.

View Article and Find Full Text PDF

A challenging aspect in the synthesis of covalent organic frameworks (COFs) that goes beyond the framework's structure and topology is interpenetration, where two or more independent frameworks are mechanically interlocked with each other. Such interpenetrated or interlocked frameworks are commonly found in three-dimensional (3D) COFs with large pores. However, interlocked two-dimensional (2D) COFs are rarely seen in the literature, as 2D COF layers typically crystallize in stacks that maximize stabilization through π-stacking.

View Article and Find Full Text PDF

Reconstructive Phase Transition Enables Abnormal Negative Thermal Quenching of Photoluminescence in a 1D Hybrid Perovskite.

Inorg Chem

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, PR China.

Organic-inorganic hybrid perovskites (OIHPs) have attracted enormous attention owing to their intriguing structural tunability and diverse functional properties. Reconstructive phase transitions, involving the breaking and reconstruction of chemical bonds, have rarely been found in such materials; however, these features may induce many intriguing physical properties in optics, ferroelectrics, ferromagnetics, and so forth. Here, we utilized the weak and switchable coordination bonds of HETMA-MnCl (HETMA = (2-hydroxyethyl) trimethylammonium) to construct a 1D hybrid perovskite employing a neutral framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!