Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model.

Clin Vaccine Immunol

Department of Neurosurgery, Kangnam St Mary's Hospital, The Catholic University of Korea, Banpo-dong 505, Seochogu, Seoul 137-701, South Korea.

Published: January 2010

In this study, we investigated the potential of combined treatment with temozolomide (TMZ) chemotherapy and tumor antigen-pulsed dendritic cells (DCs) and the underlying immunological factors of TMZ chemoimmunotherapy with an intracranial GL26 glioma animal model. The combined treatment enhanced the tumor-specific immune responses and prolonged the survival more effectively than either single therapy in GL26 tumor-bearing animals. Apoptosis was induced in the tumors of the animals by the treatment with TMZ. Calreticulin (CRT) surface exposure was detected by immunofluorescence staining of TMZ-treated GL26 cells. TMZ chemotherapy increased tumor antigen cross-priming from tumor cells, leading to cross-priming of tumor antigen-specific CD4(+) T cells and CD8(+) T cells. This chemotherapy appeared to suppress the frequency of CD4(+) CD25(+) regulatory T cells (Treg). Moreover, this combined therapy resulted in an increase in the tumor infiltration of CD4(+) and CD8(+) T cells. Collectively, the findings of this study provide evidence that the combination of TMZ chemotherapy and treatment with DC-based vaccines leads to the enhancement of antitumor immunity through increased tumor-specific immune responses via the cross-priming of apoptotic tumor cell death mediated by CRT exposure and, in part, the suppression of Treg. Therefore, CRT exposure, regulatory T cells, and cross-priming by TMZ chemotherapy may be immunological factors related to the enhancement of the antitumor effects of chemoimmunotherapy in an experimental brain tumor model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812079PMC
http://dx.doi.org/10.1128/CVI.00292-09DOI Listing

Publication Analysis

Top Keywords

tmz chemotherapy
16
immunological factors
12
combined treatment
8
cells
8
tumor-specific immune
8
immune responses
8
cross-priming tumor
8
cd8+ cells
8
regulatory cells
8
enhancement antitumor
8

Similar Publications

Macrophage membrane-camouflaged pure-drug nanomedicine for synergistic chemo- and interstitial photodynamic therapy against glioblastoma.

Acta Biomater

January 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Glioblastoma (GBM) persists as a highly fatal malignancy, with current clinical treatments showing minimal progress over years. Interstitial photodynamic therapy (iPDT) holds promise due to its minimally invasive nature and low toxicity but is impeded by poor photosensitizer penetration and inadequate GBM targeting. Here, we developed a biomimetic pure-drug nanomedicine (MM@CT), which co-assembles the photosensitizer chlorin e6 (Ce6) and the first-line chemotherapeutic drug (temozolomide, TMZ) for GBM, then camouflaged with macrophage membranes.

View Article and Find Full Text PDF

Karnofsky Performance Status (KPS) is a widely used scale to assess performance status. KPS ≥ 50% implies that patients can live at home. Therefore, maintaining KPS ≥ 50% is important to improve the quality of life of patients with glioblastoma, whose median survival is less than 2 years.

View Article and Find Full Text PDF

Background: Temozolomide (TMZ), a non-classical alkylating agent, possesses lipophilic properties that allow it to cross the blood-brain barrier, making it active within the central nervous system. Furthermore, the adverse reactions of the TMZ are relatively mild, which is why it is currently recommended as a first-line chemotherapy drug for refractory pituitary adenomas (RPAs) and pituitary carcinomas (PCs).

Summary: Systematic evaluations indicate a radiological response rate of 41% and a hormonal response rate of 53%, underscoring TMZ clinical efficacy, particularly when combined with radiotherapy.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma (GBM) is the most aggressive type of brain tumor in adults. Currently, the only treatments available are surgery, radiotherapy, and chemotherapy based on temozolomide (TMZ); however, the prognosis is dismal. Several natural substances are under investigation for cancer treatment.

View Article and Find Full Text PDF

Gliomas are a wide group of common brain tumors, with the most aggressive type being glioblastoma multiforme (GBM), with a 5-year survival rate of less than 5% and a median survival time of approximately 12-14 months. The standard treatment of GBM includes surgical excision, radiotherapy, and chemotherapy with temozolomide (TMZ). However, tumor recurrence and progression are common.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!