Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO(2) and O(3) were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O(3), alone or in combination with CO(2). O(3) induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO(2) reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO(2)+O(3) treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O(3) treatment, indicating that CO(2) cannot totally alleviate the harmful effects of O(3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2009.10.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!