Designing dendrimers for ocular drug delivery.

Eur J Med Chem

CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France.

Published: January 2010

New series of phosphorus-containing dendrimers, having one quaternary ammonium salt as core and carboxylic acid terminal groups have been synthesized from generation 0 (3 carboxylic acid terminal groups) to generation 2 (12 carboxylic acid terminal groups). These dendrimers react with the neutral form of carteolol (an ocular anti-hypertensive drug used to treat glaucoma) to afford ion pair (saline) species. The solubility in water of these charged dendrimers depends on the generation considered: generation 0 (3 carteolol) is well soluble, whereas generation 1 (6 carteolol) and generation 2 (12 carteolol) are poorly soluble. These dendrimers have been tested in vivo, as vehicle for ocular drug delivery of carteolol to rabbits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2009.10.017DOI Listing

Publication Analysis

Top Keywords

carboxylic acid
12
acid terminal
12
terminal groups
12
generation carteolol
12
ocular drug
8
drug delivery
8
generation carboxylic
8
generation
6
carteolol
5
designing dendrimers
4

Similar Publications

Long-Term Stabilized and Highly Soluble Bezafibrate-Gliclazide Co-Amorphous Binary System.

AAPS PharmSciTech

January 2025

School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico.

Metabolic syndrome (MS) has a high prevalence, with an estimated one-quarter of the world population affected by this pathological condition. Among the diseases of this syndrome are dysregulation of lipids, hypertension, and insulin resistance. Unfortunately, available drugs in the market used for treating MS, as almost 75% of all drugs, are highly insoluble, presenting a significant demand for strategies to increase their solubility.

View Article and Find Full Text PDF

Analysis of Salicylic and Phenolic Acids in the Plant by HPLC-Fluorescence Detector.

Methods Mol Biol

January 2025

Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.

Salicylic acid is a member of benzoic acid derivatives, a group of compounds which have a backbone of C6C1 consisting of one carboxyl group and one (or more) hydroxyl group(s) attached to the aromatic ring. Salicylic acid is a signaling compound in systemic acquired resistance (SAR). An increased level of salicylic acid is found in the plant after a fungi's attack, which further induces the accumulation of phytoalexins, low molecular weight defense compounds.

View Article and Find Full Text PDF

I'm Not Dead Yet (INDY) functions as a transporter for citrate, a key metabolite in the citric acid cycle, across the plasma membrane. Partial deficiency of INDY extends lifespan, akin to the effects of caloric restriction. In this work, we use cryo-electron microscopy to determine structures of INDY in the presence and absence of citrate and in complex with the well-known inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) at resolutions ranging from 2.

View Article and Find Full Text PDF

Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone.

Drug Metab Dispos

January 2025

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.

Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.

View Article and Find Full Text PDF

Background: Recent studies have demonstrated the effectiveness, safety, and tolerability of deferasirox in patients in peritoneal dialysis, however, its effect has not been studied in patients undergoing hemodialysis.

Objective: To investigate the impact of iron chelation on telomere length, oxidative stress, and ferritin levels in patients undergoing hemodialysis.

Methods: This is an open-label study, with a control group of patients undergoing hemodialysis, who will receive treatment with deferasirox 15mg/kg/day for 6 months for iron chelation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!