Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765826 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1000642 | DOI Listing |
Viruses
January 2025
Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
Nipah virus (NiV) is a zoonotic pathogen with the potential to cause human outbreaks with a high case fatality ratio. In this systematic review and meta-analysis, available evidence on NiV infections occurring in healthcare workers (HCWs) was collected and critically appraised. According to the PRISMA statement, four medical databases (PubMed, CINAHL, EMBASE, and Scopus) and the preprint repository medRixv were inquired through a specifically designed searching strategy.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
The re-emergence of the Nipah virus (NiV) in Kerala, India, following the tragic death of a 14-year-old boy, underscores the persistent threat posed by zoonotic pathogens and highlights the growing global public health challenge. With no vaccine or curative treatment available, and fatality rates as high as 94% in past outbreaks, the Nipah virus is a critical concern for health authorities worldwide. Transmitted primarily through contact with fruit bats or consumption of contaminated food, as well as direct human-to-human transmission, NiV remains a highly lethal and unpredictable pathogen.
View Article and Find Full Text PDFComput Biol Chem
January 2025
Virology and Vaccine Research and Development Program, Department of Science and Technology-Industrial Technology Development Institute, Taguig City, Metro Manila 1631, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig City, Metro Manila 1631, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Metro Manila 1000, Philippines. Electronic address:
Nipah virus (NiV) is a re-emerging zoonotic pathogen with a high mortality rate and no effective treatments, prompting the search for new antiviral strategies. While conventional antiviral drugs are often limited by issues such as poor specificity, off-target effects, and resistance development, nanobodies offer distinct advantages. These small, single-domain antibodies exhibit high specificity and stability, making them ideal candidates for antiviral therapy.
View Article and Find Full Text PDFCell
January 2025
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA. Electronic address:
Nipah virus (NiV) is a bat-borne, zoonotic RNA virus that is highly pathogenic in humans. The NiV polymerase, which mediates viral genome replication and mRNA transcription, is a promising drug target. We determined the cryoelectron microscopy (cryo-EM) structure of the NiV polymerase complex, comprising the large protein (L) and phosphoprotein (P), and performed structural, biophysical, and in-depth functional analyses of the NiV polymerase.
View Article and Find Full Text PDFNat Microbiol
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
Bats are natural hosts for many emerging viruses for which spillover to humans is a major risk, but the diversity and ecology of bat viruses is poorly understood. Here we generated 8,176 RNA viral metagenomes by metatranscriptomic sequencing of organ and swab samples from 4,143 bats representing 40 species across 52 locations in China. The resulting database, the BtCN-Virome, expands bat RNA virus diversity by over 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!