Solenopsis ant magnetic material: statistical and seasonal studies.

Phys Biol

Coordenação de Física Aplicada, Centro Brasileiro de Pesquisas Físicas, Rua Dr Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil.

Published: November 2009

In this paper, we quantify the magnetic material amount in Solenopsis ants using ferromagnetic resonance (FMR) at room temperature. We sampled S. interrupta workers from several morphologically indistinguishable castes. Twenty-five oriented samples of each body part of S. interrupta (20 units each) showed that FMR line shapes are reproducible. The relative magnetic material amount was 31 +/- 12% (mean +/- SD) in the antennae, 27 +/- 13% in the head, 21 +/- 12% in the thorax and 20 +/- 10% in the abdomen. In order to measure variation in the magnetic material from late summer to early winter, ants were collected each month between March and July. The amount of magnetic material was greatest in all four body parts in March and least in all four body parts in June. In addition, S. richteri majors presented more magnetic material than minor workers. Extending these findings to the genera Solenopsis, the reduction in magnetic material found in winter could be explained by our sampling fewer foraging major ants.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1478-3975/6/4/046012DOI Listing

Publication Analysis

Top Keywords

magnetic material
28
material amount
8
+/- 12%
8
body parts
8
magnetic
7
material
7
+/-
5
solenopsis ant
4
ant magnetic
4
material statistical
4

Similar Publications

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Verdazyl radical polymers for advanced organic spintronics.

Nat Commun

January 2025

Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.

Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges.

View Article and Find Full Text PDF

Rationale And Objectives: Post-transarterial chemoembolization liver failure (PTLF) is a potentially fatal complication of transarterial chemoembolization (TACE). Accurate preoperative prediction of PTLF is crucial for improving patient outcomes. This study aimed to develop and validate a prediction model based on the functional liver imaging score (FLIS) to assess the risk of PTLF.

View Article and Find Full Text PDF

Amide proton transfer-weighted (APTw) imaging and derived quantitative metrics in evaluating gliomas: Improved performance compared to magnetization transfer ratio asymmetry (MTR).

Acad Radiol

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.Z., Y.L., Y.L., Y.D., N.S., Y.X., S.Y., Y.F., J.Z., D.L., L.L., W.Z.). Electronic address:

Rationale And Objectives: Isocitrate dehydrogenase (IDH) status, glioma subtypes and tumor proliferation are important for glioma evaluation. We comprehensively compare the diagnostic performance of amide proton transfer-weighted (APTw) MRI and its related metrics in glioma diagnosis, in the context of the latest classification.

Materials And Methods: Totally 110 patients with adult-type diffuse gliomas underwent APTw imaging.

View Article and Find Full Text PDF

Impact of Endorectal Coil Use on Extraprostatic Extension Detection in Prostate MRI: A Retrospective Monocentric Study.

Acad Radiol

January 2025

Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (O.T.E., E.C.Y., B.D.S., S.A.H., D.G.G., Y.L., M.J.B., P.L.C., B.T.). Electronic address:

Rationale And Objectives: Accurate preoperative mpMRI-based detection of extraprostatic extension (EPE) in prostate cancer (PCa) is critical for surgical planning and patient outcomes. This study aims to evaluate the impact of endorectal coil (ERC) use on the diagnostic performance of mpMRI in detecting EPE.

Materials And Methods: This retrospective study with prospectively collected data included participants who underwent mpMRI and subsequent radical prostatectomy for PCa between 2007 and 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!