BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha.

Mol Endocrinol

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057-1469, USA.

Published: January 2010

Inherited mutations of the breast cancer susceptibility gene BRCA1 confer a high risk for breast cancer development. The (300)RXKK and (266)KXK motifs have been identified previously as sites for acetylation of the estrogen receptor-alpha (ER-alpha), and (302)K was also found to be a site for BRCA1-mediated mono-ubiquitination of ER-alpha in vitro. Here we show that ER-alpha proteins with single or double lysine mutations of these motifs (including K303R, a cancer-associated mutant) are resistant to inhibition by BRCA1, even though the mutant ER-alpha proteins retain the ability to bind to BRCA1. We also found that BRCA1 overexpression reduced and knockdown increased the level of acetylated wild-type ER-alpha, without changing the total ER-alpha protein level. Increased acetylation of ER-alpha due to BRCA1 small interfering RNA was dependent upon phosphatidylinositol 3-kinase/Akt signaling and on up-regulation of the coactivator p300. In addition, using an in vitro acetylation assay, we found that in vitro-translated wild-type BRCA1 but not a cancer-associated point mutant (C61G) inhibited p300-mediated acetylation of ER-alpha. Furthermore, BRCA1 overexpression increased the levels of mono-ubiquitinated ER-alpha protein, and a BRCA1 mutant that is defective for ubiquitin ligase activity but retains other BRCA1 functions (I26A) did not ubiquitinate ER-alpha or repress its activity in vivo. Finally, ER-alpha proteins with mutations of the (300)RXKK or (266)KXK motifs showed modest or no BRCA1-induced ubiquitination. We propose a model in which BRCA1 represses ER-alpha activity, in part, by regulating the relative degree of acetylation vs. ubiquitination of ER-alpha.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802901PMC
http://dx.doi.org/10.1210/me.2009-0218DOI Listing

Publication Analysis

Top Keywords

er-alpha
13
er-alpha proteins
12
brca1
11
acetylation ubiquitination
8
estrogen receptor-alpha
8
breast cancer
8
300rxkk 266kxk
8
266kxk motifs
8
brca1 mutant
8
brca1 overexpression
8

Similar Publications

HR/HER2-low breast cancer is a significant subgroup of conventional HR/HER2-negative breast cancer, and combination of CDK4/6 inhibitor and endocrine therapy is the standard first-line and second-line treatments for advanced HR/HER2-low breast cancer. Nevertheless, it remains uncertain whether HER2 signaling affects the effectiveness of CDK4/6 inhibitor administered in combination with endocrine therapy for HR/HER2-low breast cancer and suitable intervention measures. This study revealed poor efficacy for CDK4/6 inhibitor combined with endocrine therapy for HR/HER2-low breast cancer in vitro and in vivo models.

View Article and Find Full Text PDF

Background/aim: G protein-coupled estrogen receptor 1 (GPER1) appears to play a tumor-suppressive role in cervical squamous cell carcinoma (CSCC)GPER1 suppression leads to significantly increased expression of serpin family E member 1 (SERPINE1)/protein plasminogen activator inhibitor type 1 (PAI-1). The question arises, what role does SERPINE1/PAI-1 play in GPER1-dependent tumorigenic potential of CSCC.

Materials And Methods: SiHa and C33A CSCC cells were treated with GPER1 agonist G1 or antagonist G36.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has a minimal (<15%) 5-year existence, in part due to resistance to chemoradiotherapy. Previous research reveals the impact of paricalcitol (P) and hydroxychloroquine (H) on altering the lysosomal fusion, decreasing stromal burden, and triggering PDAC to chemotherapies. This investigation aims to elucidate the molecular properties of the H and P combination and their potential in sensitizing PDAC to gemcitabine (G).

View Article and Find Full Text PDF

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a dNTP hydrolase important for intracellular dNTP homeostasis and serves as tumor suppressor and modulator of antimetabolite efficacy in cancer, though largely unexplored in breast cancer (BC). A cohort of patients with early BC (n = 564) with available gene expression data (GEP) was used. SAMHD1 protein expression was assessed by immunohistochemistry performed on tissue microarrays.

View Article and Find Full Text PDF

Effects of Caffeic Acid Phenethyl Ester on Embryonic Development Through Regulation of Mitochondria and Endoplasmic Reticulum.

Vet Sci

December 2024

Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China.

Caffeic acid phenethyl ester (CAPE) is one of the main active components of the natural medicine propolis, which has antioxidant, anti-tumor, and immunomodulatory activities. This study aimed to analyze the effects and underlying mechanisms of CAPE added to the medium of in vitro cultures on the developmental competence, mitochondria, and endoplasmic reticulum of porcine embryos. The results demonstrated that 1 nM of CAPE significantly improved the quality of porcine embryos, increased the rate of blastocyst formation, and enhanced the proliferation ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!