Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The evaluation of the postural control system (PCS) has applications in rehabilitation, sports medicine, gait analysis, fall detection, and diagnosis of many diseases associated with a reduction in balance ability. Standing involves significant muscle use to maintain balance, making standing balance a good indicator of the health of the PCS. Inertial sensor systems have been used to quantify standing balance by assessing displacement of the center of mass, resulting in several standardized measures. Electromyogram (EMG) sensors directly measure the muscle control signals. Despite strong evidence of the potential of muscle activity for balance evaluation, less study has been done on extracting unique features from EMG data that express balance abnormalities. In this paper, we present machine learning and statistical techniques to extract parameters from EMG sensors placed on the tibialis anterior and gastrocnemius muscles, which show a strong correlation to the standard parameters extracted from accelerometer data. This novel interpretation of the neuromuscular system provides a unique method of assessing human balance based on EMG signals. In order to verify the effectiveness of the introduced features in measuring postural sway, we conduct several classification tests that operate on the EMG features and predict significance of different balance measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TITB.2009.2035050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!