A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Building 3-D statistical shape models by direct optimization. | LitMetric

Building 3-D statistical shape models by direct optimization.

IEEE Trans Med Imaging

Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, U.K.

Published: April 2010

Statistical shape models are powerful tools for image interpretation and shape analysis. A simple, yet effective, way of building such models is to capture the statistics of sampled point coordinates over a training set of example shapes. However, a major drawback of this approach is the need to establish a correspondence across the training set. In 2-D, a correspondence is often defined using a set of manually placed 'landmarks' and linear interpolation to sample the shape in between. Such annotation is, however, time-consuming and subjective, particularly when extended to 3-D. In this paper, we show that it is possible to establish a dense correspondence across the whole training set automatically by treating correspondence as an optimization problem. The objective function we use for the optimization is based on the minimum description length principle, which we argue is a criterion that leads to models with good compactness, specificity, and generalization ability. We manipulate correspondence by reparameterizing each training shape. We describe an explicit representation of reparameterization for surfaces in 3-D that makes it impossible to generate an illegal (i.e., not one-to-one) correspondence. We also describe several large-scale optimization strategies for model building, and perform a detailed analysis of each approach. Finally, we derive quantitative measures of model quality, allowing meaningful comparison between models built using different methods. Results are given for several different training sets of 3-D shapes, which show that the minimum description length models perform significantly better than other approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2009.2035048DOI Listing

Publication Analysis

Top Keywords

training set
12
statistical shape
8
shape models
8
correspondence training
8
minimum description
8
description length
8
models
6
correspondence
6
shape
5
training
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!