Background: If methods of differentiating stem cells into thyrocytes can be perfected, they may provide a ready source of normal thyrocytes for basic research and clinical application. We developed a novel culture method capable of differentiating mouse embryonic stem (ES) cells into thyroid follicular cells.

Methods: E14 mouse ES cells were allowed to differentiate into embryoid bodies and then stimulated with thyroid-stimulating hormone, insulin, and potassium iodide. The resulting differentiated cells were observed for expression of thyrocyte-specific mRNA transcripts with reverse transcriptase (RT)-polymerase chain reaction. To definitively identify thyrocytes, we simultaneously observed the thyrocyte-specific proteins, thyroid transcription factor-1 and PAX-8, with dual-color immunofluorescent labeling. The cells were further characterized by electron microscopy.

Results: The ES cells were successfully differentiated into thyrocytes. Differentiated cells expressed PAX-8, thyroid-stimulating hormone receptor, sodium/iodide symporter, thyroperoxidase, and thyroglobulin mRNAs, and coexpressed thyroid transcription factor-1 and PAX-8 proteins. The extent of differentiation was further explored by electron microscopy, which showed that differentiated cells had ultrastructural features similar to adult human thyrocytes, whereas the cells from unstimulated cultures were mostly disintegrated and lacked developed organelle structures.

Conclusions: These data show that E14 mouse ES cells can be differentiated into thyrocytes by culturing with thyroid-stimulating hormone, insulin, and potassium iodide. The development of reliable methods to produce thyroid cells from ES cells is important to future research in thyroid biology and medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1089/thy.2008.0291DOI Listing

Publication Analysis

Top Keywords

cells
13
e14 mouse
12
stem cells
12
thyroid-stimulating hormone
12
differentiated cells
12
mouse embryonic
8
embryonic stem
8
cells thyrocytes
8
mouse cells
8
hormone insulin
8

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health.

J Biomed Sci

January 2025

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.

Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!