A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja9042565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!