Brain injury during the last trimester to the first 1-4 years in humans is now thought to trigger an array of intellectual and emotional problems later in life, including disorders such as schizophrenia. In adult schizophrenic brains, there is a specific loss of neurons that co-express glutamic acid decarboxylase-parvalbumin (GAD67-PV). Loss of this phenotype is thought to occur in mature animals previously exposed to N-methyl-D: -aspartate receptor (NMDAR) antagonists during late gestation or at postnatal day 7 (P7). However, in similarly treated animals, we have previously shown that GAD67 and PV are unaltered in the first 24 h. To more precisely define when changes in these markers first occur, we exposed rat pups (P7 or P6-P10) to the NMDAR antagonist MK801 and at P11 co-stained brain sections for GAD67 or PV. In the cingulate cortex, we found evidence for a reduction in PV (GAD67 levels were very low to undetectable). In contrast, in the somatosensory cortex, we found that expression of GAD67 was reduced, but PV remained stable. Further, repeated but not single doses of MK801 were necessary to see such changes. Thus, depending on the region, NMDAR antagonism appears to influence expression of PV or GAD67, but not both. These observations could not have been predicted by previous studies and raise important questions as to how the GAD67-PV phenotype is lost once animals reach maturity. More importantly, such differential effects may be of great clinical importance, given that cognitive deficits are seen in children exposed to anesthetics that act by blocking the NMDAR.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-009-2059-zDOI Listing

Publication Analysis

Top Keywords

expression gad67
8
gad67
6
postnatal exposure
4
exposure mk801
4
mk801 induces
4
induces selective
4
selective changes
4
changes gad67
4
gad67 parvalbumin
4
parvalbumin brain
4

Similar Publications

Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia.

Biochim Biophys Acta Mol Cell Res

January 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. Electronic address:

Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX1 mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation.

View Article and Find Full Text PDF

Painful diabetic neuropathy commonly affects the peripheral nervous system in individuals with diabetes. However, the pathological processes and mechanisms underlying diabetic neuropathic pain remain unclear. We aimed to identify the overall profiles and screen for genes potentially involved in pain mechanisms using transcriptome analysis of the dorsal root ganglion of diabetic mice treated with streptozotocin (STZ).

View Article and Find Full Text PDF

Schizophrenia is a mental disorder characterized by positive, negative, and cognitive symptoms which is treated with antipsychotics. However, these drugs present several side effects and, some schizophrenia symptoms, like cognitive, are difficult to treat. The peroxisome proliferator-activated receptors-gamma (PPAR-γ) are expressed in dopaminergic neurons of the midbrain participating in the modulation of dopamine-mediated behavior .

View Article and Find Full Text PDF

Introduction: Geraniol (Ger), a monoterpene, is a common constituent of several essential oils. This study explored the anticonvulsant effect of Ger in-vitro using nerve growth factor (NGF) prompted PC12 cell injured by Glutamate (Glu) and in-vivo using Pentylenetetrazole (PTZ)-induced kindling through the GABAergic pathway.

Materials: To assess the effect of Ger on NGF prompted PC12 cells injured by Glu, Ger at concentrations of 25, 50, 100, 200 and 400 μg/mL was used.

View Article and Find Full Text PDF

GABAergic circuit interaction between central amygdala and bed nucleus of the stria terminalis in lipopolysaccharide-induced despair-like behavior.

Physiol Behav

January 2025

Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan. Electronic address:

Hyperexcitability of central amygdala (CeA) induces depressive symptoms. The bed nucleus of the stria terminalis (BNST) receives GABAergic input from the CeA. However, it remains unclear whether the GABAergic neurons in the CeA projecting to BNST contribute to major depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!