A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A cause-and-effect-based mathematical curvilinear model that predicts the effects of self-monitoring of blood glucose frequency on hemoglobin A1c and is suitable for statistical correlations. | LitMetric

Background: Previous studies have shown an association between the frequency of self-monitored blood glucose (SMBG) and hemoglobin A1c. Randomized controlled trials (RCTs) have shown this to be a causal correlation for insulin-using patients. Several studies have used linear regression, but a straight line will descend into negative hemoglobin A1c values (an impossibility). This study developed a cause-and-effect-based nonlinear model to predict the outcome of RCTs on this subject, tested this model with clinical data, and offered this model in place of linear regression, especially for the still-debated case of noninsulin-using patients.

Methods: The model was developed from cause-and-effect principles. The clinical study utilized retrospective data from patient histories of a large endocrine practice. Data sets were obtained for five treatment regimens: continuous subcutaneous insulin infusion (CSII), subcutaneous insulin (SC), no insulin (NI), oral medication (OM), and no medication (NM). OM and NM are subgroups of NI. The model was fitted to each group using nonlinear leastsquares methods. Each group was ordered by SMBG tests per day (BGpd) and was divided in half; t tests were run between the A1C's of the two halves.

Results: Self-monitored blood glucose readings from 1255 subjects were analyzed (CSII, N = 417; SC, N = 286; NI, N = 552; OM, N = 505; NM, N = 47). The CSII, SC, NI, and OM groups showed the expected declining statistically fitted curve and a significant association of BGpd with hemoglobin A1c (P < 0.004). The NM group showed insignificant results.

Conclusions: The nonlinear model is based on cause-and-effect principles and mathematics. It yields a prediction that RCTs will be able to reveal that higher SMBG frequency causes lower hemoglobin A1c.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769690PMC
http://dx.doi.org/10.1177/193229680700100608DOI Listing

Publication Analysis

Top Keywords

hemoglobin a1c
20
blood glucose
12
self-monitored blood
8
linear regression
8
nonlinear model
8
cause-and-effect principles
8
subcutaneous insulin
8
model
7
hemoglobin
5
a1c
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!